Skip to main content

The genetics of lung cancer

  • Chapter
The Genetics of Cancer

Part of the book series: Cancer Biology and Medicine ((CABM,volume 4))

Abstract

Lung cancer occupies a place of central importance among malignant neoplasia because of worldwide rising incidence, high mortality rates and the potential for prevention through curtailment of smoking1. It is the leading cause of cancer deaths in the United States2 and perhaps worldwide. While early-stage lung cancer is amenable to surgical cure, 70% of patients have regional or distant spread at the time of diagnosis, and overall five-year survival rates are only 5– 10%3. The American Cancer Society estimated that 157000 new lung cancer cases arose in the United States in 1990 with 142 000 deaths. Four pathological types account for more than 90% of cases: epidermoid cancer (35%), adenocar-cinoma (30%), and large cell carcinoma (15%), these three being collectively referred to as non-small cell lung cancer (NSCLC). The fourth category, small cell carcinoma (20%), is characterized by specific pathological and molecular findings, as well as distinct clinical features, such as early metastasis and an initial responsiveness to chemotherapy4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A Report of the Surgeon General. The Health Consequence of Smoking: Cancer, DHHS (PHS) 82–50179. Rockville, MD: Office on Smoking and Health, US Department of Health and Human Services; 1982.

    Google Scholar 

  2. Boring CC, Squires TS, Tong T. Cancer statistics 1991. CA. 1991; 41: 19–36.

    PubMed  CAS  Google Scholar 

  3. Minna JD, Higgins GA, Glatstein EJ. Cancer of the lung. In: DeVita VT, Hellman S, Rosenberg S, eds. Principles and practice of oncology. Philadelphia: JB Lippincott Co; 1982: 396–474.

    Google Scholar 

  4. Lubin JH, Blot WJ. Assessment of lung cancer risk factors by histologic category. JNCI. 1984; 73: 383–389.

    PubMed  CAS  Google Scholar 

  5. Hoffmann D, Hecht SS. Advances in tobacco carcinogenesis. In: Cooper CS, Grover PL, eds. Handbook of experimental pharmacology. Vol 94. Heidelberg: Springer-Verlag; 63.

    Google Scholar 

  6. IARC monographs on the evaluation of the carcinogenic risk of chemicals to human, tobacco smoking. Vol 38. Lyon, France: IARC; 1986.

    Google Scholar 

  7. Doll R, Peto R. Cigarette smoking and bronchial carcinoma: dose and time relationships among regular smokers and lifelong non-smokers. J Epid Commun Health. 1978; 32(4): 303–313.

    CAS  Google Scholar 

  8. Levin ML, Goldstein H, Gerhardt PR. Cancer and tobacco smoking: A preliminary report. JAMA. 1950; 143: 336–338.

    CAS  Google Scholar 

  9. Doll R, Hill AB. A study of the aetiology of carcinoma of the lung. Br Med J. 1952; 2: 1271–1286.

    PubMed  CAS  Google Scholar 

  10. Hammond EC. Smoking in relation to the death rates of one million men and women. Natl Cancer Inst Monogr. 1966; 19: 127–204.

    PubMed  CAS  Google Scholar 

  11. Doll R, Peto R. Mortality in relation to smoking: 20 years’ observations on male British doctors. Br Med J. 1976; 2: 1525–1536.

    PubMed  CAS  Google Scholar 

  12. US Surgeon General. The health consequences of smoking: cancer. NIH Publication 82-50179. Washington, DC: US DHHS; 1982.

    Google Scholar 

  13. Castonguay A. Methods and strategies in lung cancer control. Cancer Res. 1992; 52(Suppl):2641–2651.

    Google Scholar 

  14. Department of Health and Human Services. Reducing the Health Consequences of Smoking: 25 Years of Progress: A Report of the Surgeon General, DHHS Publication No (CDC) 89-8411. Washington, D.C.: US Department of Health and Human Services, Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 1989.

    Google Scholar 

  15. Wynder EL, Covey LS. Epidemiologic patterns in lung cancer by histologic types. Eur J Clin Oncol. 1987; 23: 1491–1496.

    CAS  Google Scholar 

  16. Ikeda T, Kurita Y, Inutsuka S, Tanaka K, Nakanishi Y, Shigematsu N, Nobutomo K. The changing pattern of lung cancer by histologic type — a review of 1151 cases from a University hospital in Japan, 1970–1989. Lung Cancer. 1991; 7: 157–164.

    Google Scholar 

  17. Hammond EC, Selikoff IJ. Asbestos exposure, cigarette smoking, and death rates. Ann NY Acad Sci. 1979; 330: 473.

    PubMed  CAS  Google Scholar 

  18. Archer VE. Enhancement of lung cancer by cigarette smoking in uranium and other miners. Carcinog Compr Surv. 1985; 8: 23.

    PubMed  CAS  Google Scholar 

  19. Mossman BT, Craighead JE. Mechanisms of asbestos carcinogenesis. Environ Res. 1981; 25: 269–280.

    PubMed  CAS  Google Scholar 

  20. National Council on Radiation Protection and Measurements. Evaluation of occupation and environmental exposures to radon and radon daughters in the United States. NCRP Report 78. Bethesda MD: National Council on Radiation Protection and Measurements; 1984.

    Google Scholar 

  21. National Research Council, Committee on the Biological Effects of Radiation. Health risks of ionizing radiation. Health risks of radon and other internally-deposited alpha emitters: BEIR IV. Washington, DC: National Academy Press; 1988.

    Google Scholar 

  22. Samet JM, Kutvirt DM, Waxweiler RJ, Key CR. Uranium mining and lung cancer in Navajo men. NEJM. 1984; 310: 1481–1484.

    PubMed  CAS  Google Scholar 

  23. Lubin HJ, Boice JD Jr, Edling C, et al. Radon and lung cancer risk: a joint analysis of 11 underground miners studies. NIH Publication no. 94-3644. Rockville, MD: National Institute of Health; 1994.

    Google Scholar 

  24. Schoenberg JB, Klotz JB, Wilcox HB, et al. Case-control study of residential radon and lung cancer among New Jersey women. Cancer Res. 1990; 50: 6520–6524.

    PubMed  CAS  Google Scholar 

  25. Letourneau EG, Krewski D, Choi NW, et al. Case-control study of residential radon and lung cancer in Winnipeg, Manitoba, Canada. Am J Epidemiol. 1994; 140(4): 310–322.

    PubMed  CAS  Google Scholar 

  26. Wada S, Nishimoto Y, Miyanishi M, et al. Mustard gas as a cause of respiratory neoplasia in man. Lancet 1968; 1: 1161–1163.

    PubMed  CAS  Google Scholar 

  27. Lloyd J. Long-term mortality of steelworkers. V. Respiratory cancer of coke plant workers. JOccupMed. 1971; 13: 53–68.

    CAS  Google Scholar 

  28. Doll R, Morgan L, Speizer F. Cancer of the lung and nasal sinuses in nickel workers. Br J Cancer. 1970; 24: 623–632.

    PubMed  CAS  Google Scholar 

  29. Machle W, Gregorius F. Cancer of the respiratory system in the United States chromate-producing industry. US Public Health Reports. 1948; 63: 1114–1127.

    CAS  Google Scholar 

  30. Fraumeni JF Jr. Chemicals in the induction of respiratory tract tumors. In: Proceedings of the XI International Cancer Congress, Florence, 1974. Excerpta Medica International Congress Series No. 351, Vol. 3. Cancer Epidemiology, Environmental Factors. Amsterdam: Exerpta Medica; 1974.

    Google Scholar 

  31. Vena JE, Byers TE, Cookfair D, Swanson M. Occupation and lung cancer risk. Cancer 1985; 56: 910–917.

    PubMed  CAS  Google Scholar 

  32. Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. JNCI. 1994; 86(21): 1600–1607.

    PubMed  CAS  Google Scholar 

  33. Tokuhata GK, Lillienfeld AM. Familial aggregation of lung cancer risk in humans. JNCI. 1963; 30: 289.

    PubMed  CAS  Google Scholar 

  34. Ooi WL, Elston RC, Chen VW, Bailey-Wilson JE, Rothschild H. Increased familial risk for lung cancer. JNCI. 1986; 76: 217.

    PubMed  CAS  Google Scholar 

  35. Tokuhata GK, Lilienfeld AM. Familial aggregation of lung cancer in humans. JNCI. 1963; 30: 289–312.

    PubMed  CAS  Google Scholar 

  36. Ooi WL, Elston RC, Chen VW, Bailey-Wilson JE, Rothschild H. Increased familial risk for lung cancer. JNCI. 1986; 76: 217–222.

    PubMed  CAS  Google Scholar 

  37. Sellers TA, Elston RC, Stewart C, Rothschild H. Familial risk of cancer among randomly selected cancer probands. Genet Epidemiol. 1988; 4: 381–392.

    Google Scholar 

  38. Ooi WL, Elston RC, Chen VW, Bailey-Wilson JE, Rothschild H. Increased familial risk of lung cancer. JNCI. 1986; 76: 217–222.

    PubMed  CAS  Google Scholar 

  39. Shaw GL, Falk RT, Pickle LW, Mason TJ, Buffler PA. Lung cancer risk associated with cancer in relatives. J Clin Epidemiol. 1991; 44: 429–437.

    PubMed  CAS  Google Scholar 

  40. Joishy SK, Cooper RA, Rowley PT. Alveolar cell carcinoma in identical twins: similarity in time of onset, histochemistry, and site of metastasis. Ann Intern Med. 1977; 87: 447.

    PubMed  CAS  Google Scholar 

  41. Braun M, Caporaso N, Page W, Hoover R. Genetic component of lung cancer: cohort study of twins. Lancet. 1994; 344: 440–441.

    PubMed  CAS  Google Scholar 

  42. Sellers TA, Bailey-Wilson JE, Elston RC, Wilson AE, Elston RC, Rothschild H. Evidence for Mendelian inheritance in the pathogenesis of lung cancer. JNCI. 1990; 82: 1272–1279.

    PubMed  CAS  Google Scholar 

  43. Brauch H, Johnson B, Hovis J, Yano T, Gazdar A, Minna JD. Molecular analysis of the short arm of chromosome 3 in small-cell and non-small cell carcinoma of the lung. NEJM. 1987; 317: 1109–1113.

    PubMed  CAS  Google Scholar 

  44. Ohata H, Emi M, Fujiwara Y, et al. Deletion mapping of the short arm of chromosome 8 in non-small cell lung carcinoma. Genes Chromosome Cancer. 1993; 7: 85–88.

    CAS  Google Scholar 

  45. Ludwig CU, Raefle G, Dalquen P, Stulz P, Stahel R, Obrecht JP. Allelic loss on the short arm of chromosome 1 in non-small cell lung carcinoma. Int J Cancer. 1991; 49: 661–665.

    PubMed  CAS  Google Scholar 

  46. Hosoe S, Ueno K, Shigedo Y, et al. A frequent deletion of chromosome 5q21 in advanced small cell and non-small cell carcinoma of the lung. Cancer Res. 1994; 54: 1787–1790.

    PubMed  CAS  Google Scholar 

  47. Center R, Lukeis R, Dietzsch E, Gillespie M, Garson OM. Molecular deletion of 9q sequances in non-small cell cancer and malignant mesothelioma. Genes Chromosome Cancer. 1993; 7: 47–53.

    CAS  Google Scholar 

  48. Mead LJ, Gillespie MT, Irving LB, Campbell LJ. Homozygous and hemizygous deletions of 9p centromeric to the inteferon genes in lung cancer. Cancer Res. 1994; 54: 2307–2309.

    PubMed  CAS  Google Scholar 

  49. Shiseki M, Kohno T, Nishikawa R, Sameshima Y, Mizoguchi H, Yokoda J. Frequent allelic losses on chromosome 2q, 18q, 22q in advanced non-small cell lung cancer. Cancer Res. 1994; 54: 5643–5648.

    PubMed  CAS  Google Scholar 

  50. Lukeis R, Irving L, Garson M, Hasthorpe S. Cytogenetics of non-small cell lung cancer: analysis of consistent non-random abnormalities. Genes Chromosome Cancer. 1990; 2: 116–124.

    CAS  Google Scholar 

  51. Yokota J, Wada M, Shimosato Y, Terada M, Sugimura T. Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell lung cancer and chromosome 3 in adenocarcinoma of the lung. PNAS USA. 1987; 84: 9252–9256.

    PubMed  CAS  Google Scholar 

  52. Weston A, Willey JC, Modali R, et al. Differential DNA sequence deletions from chromosomes 3, 11, 13 and 17 in squamous cell carcinoma, large-cell carcinoma, and adenocarcinoma of the human lung. PNAS USA. 1989; 86: 5099–5103.

    PubMed  CAS  Google Scholar 

  53. Miller CW, Simon K, Aslo A, et al. p53 Mutations and lung tumors. Cancer Res. 1992; 52: 1695–1698.

    PubMed  CAS  Google Scholar 

  54. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994; 54: 4855–4878.

    PubMed  CAS  Google Scholar 

  55. Horowitz JM, Yandell DW, Park S-H, et al. Point mutational inactivation of the retinoblastoma antioncogene. Science. 1989; 243: 937–940.

    PubMed  CAS  Google Scholar 

  56. Horowitz JM, Park S-H, Bogenmann E, et al. Frequent inactivation of the retinoblastoma antioncogene is restricted to a subset of human tumor cells. PNAS USA. 1990; 87: 2775–2779.

    PubMed  CAS  Google Scholar 

  57. Rodenhuis S, Slebos RJC. Clinical significance of ras oncogene activation in human lung cancer. Cancer Res. 1992; 52(Suppl):2665–2669.

    Google Scholar 

  58. Tsujimoto Y, Croce CM. Analysis of the structure, transcripts and protein products of bel 2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA. 1986; 83: 5214–5218.

    PubMed  CAS  Google Scholar 

  59. Pezzella F, Turley H, Kuzu I, et al. bcl-2 Protein in non-small-cell lung carcinoma. NEJM. 1993; 329: 690–694.

    PubMed  CAS  Google Scholar 

  60. Paakko P, Nuorva K, Kamel D, Soinin Y. Evidence by in situ hybridization that c-erbB-2 proto-oncogene expression is a marker of malignancy and is expressed in lung adenocarcinoma. Am J Resp Cell Mol Biol. 1992; 7: 325–334.

    CAS  Google Scholar 

  61. Yokota T, Toyoshima K, Sugimura T, et al. Amplification of c-erb-B2 oncogene in human adenocarcinomas in vivo. Lancet. 1986; 1: 765–767.

    PubMed  CAS  Google Scholar 

  62. Sozzi G, Miozzo M, Tagliabue E, et al. Cytogenetic abnormalities and overexpression of receptors for growth factors in normal bronchial epithelium and tumor samples of lung cancer patients. Cancer Res. 1991; 51: 400–404.

    PubMed  CAS  Google Scholar 

  63. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD. Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature (London). 1983; 306: 194–196.

    CAS  Google Scholar 

  64. Grifin C, Baylin S. Expression of the c-myb oncogene in human small cell lung carcinoma. Cancer Res. 1985; 45: 272–275.

    Google Scholar 

  65. Pfeifer AM A, Jones RT, Bowden PE, et al. Human bronchial epithelial cells transformed by the c-raf-1 and c-myc protooncogenes induce multidifferentiated carcinomas in nude mice: A model for lung carcinogenesis. Cancer Res. 1991; 51: 3793–3801.

    PubMed  CAS  Google Scholar 

  66. Huang M, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–572.

    PubMed  CAS  Google Scholar 

  67. Zhang X, Liu Y, Lee M-O, Pfahl M. A specific defect in retinoic acid response associated with human lung cancer cell lines. Cancer Res. 1994; 54: 5663–5669.

    PubMed  CAS  Google Scholar 

  68. Caporaso N, Landi MT, Vineis P. Relevance of metabolic polymorphisms to human malignancy. Pharmacogenet. 1991; 1: 4–19.

    CAS  Google Scholar 

  69. Guengerich FP, Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol. 1991; 4(4): 391–407.

    PubMed  CAS  Google Scholar 

  70. Miller EC, Miller JA. Mechanisms of chemical carcinogenesis. Cancer. 1981; 47(5): 1055–1064.

    PubMed  CAS  Google Scholar 

  71. Cholerton S, Arpanahi A, McCraken N, et al. Poor metabolizers of nicotine and CYP2D6 polymorphism. Lancet. 1994; 343: 62–63.

    PubMed  CAS  Google Scholar 

  72. Trell L, Korsgaard R, Janzon L, Trell E. Distribution and reproducibility of aryl hydrocarbon hydroxylase inducibility in a prospective population study of middle-aged male smokers and non-smokers. Cancer. 1985; 56: 1988–1994.

    PubMed  CAS  Google Scholar 

  73. Kellerman G, Luyte-Kellerman M, Shaw CR. Genetic variation of aryl hydrocarbon hydroxylase in human lymphocytes. Am J Hum Genet. 1973; 25: 327–331.

    Google Scholar 

  74. Kellermann G, Shaw CR, Luyten-Kellermann M. Aryl hydrocarbon hydroxylase inducibility i and bronchogenic carcinoma. NEJM. 1973; 289: 934–937.

    PubMed  CAS  Google Scholar 

  75. Trell E, Korsgaard R, Hood B, Kitzing P, Norden G, Simonsson BG. Aryl hydrocarbon hydroxylase inducibility and laryngeal carcinomas. Lancet. 1976; 2: 140.

    PubMed  CAS  Google Scholar 

  76. Trell E, Bjorlin G, Andreasson L, Korsgaard R, Mattiasson I. Carcinoma of the oral cavity in relation to aryl hydrocarbon hydroxylase inducibility, smoking, and dental status. Int J Oral Surg. 1981; 10: 93.

    PubMed  CAS  Google Scholar 

  77. Kouri RE, McKinney CE, Slomiany DJ, Snodgrass DR, Wray NP, McLemore TL. Positive correlation between high aryl hydrocarbon hydroxylase activity and primary lung cancer as analyzed in cryopreserved lymphocytes. Cancer Res. 1982; 42: 5030–5037.

    PubMed  CAS  Google Scholar 

  78. Gurgis HA, Lynch HT, Mate T, et al. Aryl hydrocarbon hydroxylase activity in lymphocytes from lung cancer cases and normal controls. Oncology. 1976; 33: 105.

    Google Scholar 

  79. Paigen B, Gurtoo HL, Minowada J, et al. Questionable relation of aryl hydrocarbon hydroxylase to lung-cancer risk. NEJM. 1977; 297: 346–350.

    PubMed  CAS  Google Scholar 

  80. Uematsu F, Kikuchi H, Motomiya M, et al. Association between restriction fragment length polymorphism of the human cytochrome P450IIE1 gene and susceptibility to lung cancer. Jpn J Can Res. 1991; 82: 254–256.

    CAS  Google Scholar 

  81. Hirvonen A, Husgafvel-Pursiainen K, Anttila S, Karjalainen A, Vainio H. The human CYP2E1 gene and lung cancer: Dral and Rsal restriction fragment length polymorphisms in a Finnish study population. Carcinogenesis. 1993; 14 (l):85–88.

    Google Scholar 

  82. Persson I, Johansson I, Bergling H, et al. Genetic polymorphism of cytochrome P4502E1 in a Swedish population. FEBS Lett. 1993; 319: 207–211.

    PubMed  CAS  Google Scholar 

  83. Kato S, Shields PG, Caporaso NE et al. Cytochrome P450IIE1 genetic polymorphisms, racial variation, and lung cancer risk. Cancer Res. 1992; 52: 6712–6715.

    PubMed  CAS  Google Scholar 

  84. Kotake AN, Schoeller DA, Lambert GH, Baker AL, Schaffer DD, Josephs H. The caffeine CO2 breath test: Dose response and route of N-demethylation in smokers and nonsmokers. Pharmacol Ther. 1982; 32(2): 261–269.

    Google Scholar 

  85. Butler MA, Lang NP, Young JF, et al. Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics. 1992; 2(3): 116–127.

    PubMed  CAS  Google Scholar 

  86. Vincent-Viry M, Pontes ZB, Gueguen R, Galteau M-M, Siest G. Segregation analyses of four urinary caffeine ratios implicated in the determination of human acetylation phenotype. Genet Epidemiol. 1994; 11: 115–129.

    PubMed  CAS  Google Scholar 

  87. Bock KW, Schrenck D, Forester A, Griese E-U, Morike K, Brockmeier D, Eichelbaum M. The influence of environmental and genetic factors of CYP2D6, CYP1A2, and UDP-glucuronosyltransferases in man using sparteine, caffeine, and paracetamol probes. Pharmacogenetics. 1994; 4: 209–218.

    PubMed  CAS  Google Scholar 

  88. Shimada T, Guengerich FP. Evidence for cytochrome P-45ONF, the nifedipine oxidase, being i the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc Natl Acad Sci USA. 1989; 86: 462–465.

    PubMed  CAS  Google Scholar 

  89. Yun C-H, Shimada T, Guengerich FP. Roles of human liver cytochrome P4502C and 3A enzymes in the 3-hydroxylation of benzo (a) pyrene. Cancer Res. 1992; 52: 1868–1874.

    PubMed  CAS  Google Scholar 

  90. Crespi CL, Penman BW, Leakey JAE, et al. A tobacco-smoke derived nitrosamine, NNK, is activated by multiple human cytochrome P450s including the polymorphic CYP2D6. Carcinogenesis. 1991; 12: 1197–1201.

    PubMed  CAS  Google Scholar 

  91. Poppel G, Verhagen H, Veer P, van Bladeren PJ. Markers for cytogenetic damage in smokers: Association with plasma antioxidants and glutathione S-transferase μ. Cancer Epidemiol Biomarkers Prev. 1993; 2: 441–447.

    PubMed  Google Scholar 

  92. Anttila S, Hirvonen A, Vainio H, Husgafvel-Pursiainen K, Hayes JD, Ketterer B. Immunohistochemical localization of glutathione S-transferase in human lung. Cancer Res. 1993; 53: 5643–5648.

    PubMed  CAS  Google Scholar 

  93. Sugimura H, Caporaso N, Hoover RN, et al. Association of rare alleles of the Harvey ras proto oncogene locus with lung cancer. Cancer Res. 1990; 50: 1857–1862.

    PubMed  CAS  Google Scholar 

  94. Krontiris TG, Devlin B, Karp DD, Robert NJ, Risch N. An association between the risk of cancer and mutations in the Hrasl minisatellite locus. NEJM. 1993; 329(8): 517–523.

    PubMed  CAS  Google Scholar 

  95. Heighway J, Thatcher N, Cemy T, Hasleton PS. Genetic predisposition to human lung cancer. Br J Cancer. 1986; 53: 453–457.

    PubMed  CAS  Google Scholar 

  96. Weston A, Ling-Cawley HM, Caporaso NE, et al. Determination of the allelic frequencies of an L-myc and a p53 polymorphism in human lung cancer. Carcinogenesis. 1994; 15(4): 583–587.

    PubMed  CAS  Google Scholar 

  97. Weston A, Perrin LS, Forrester K. et al. Allelic frequency of a p53 polymorphism in human lung cancer. Cancer Epidemiol Prev. 1992; 1(6): 481–484.

    CAS  Google Scholar 

  98. Tamai S, Sugimura H, Caporaso N, et al. Restriction fragment length polymorphism analysis of the L-myc gene locus in a case-control study of lung cancer. Int J Cancer. 1990; 46: 411–415.

    PubMed  CAS  Google Scholar 

  99. Hallier E, Langhof T, Dannappel D, Polymorphism of glutathione conjugation of methyl bromide, ethylene oxide and dichloromethane in human blood: influence on the induction of sister chromatid exchanges (SCE) in lymphocytes. Arch Toxicol. 1993; 67: 173–178.

    PubMed  CAS  Google Scholar 

  100. Pemble S, Schroeder KR, Spencer SR, et al. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J. 1994; 300: 271–276.

    PubMed  CAS  Google Scholar 

  101. Lyn D, Cherney BW, Lalande M, et al. A duplicated region is responsible for the poly(ADP-ribose) polymerase polymorphism on chromosome 13, associated with a predisposition to cancer. Am J Hum Genet. 1993; 52: 124–134.

    PubMed  CAS  Google Scholar 

  102. Bhatia KG, Cherney BW, Huppi K, et al. A deletion linked to a poly(ADP-ribose) polymerase gene on chromosome 13q33-qter occurs frequently in the normal black population as well as in multiple tumor DNA. Cancer Res. 1990; 50: 5406–5413.

    PubMed  CAS  Google Scholar 

  103. Caporaso NE, Shields PG, Landi MT, et al. The debrisoquine metabolic phenotype and DNA-based assays: implications of misclassification of lung cancer and the debrisoquine metabolic phenotype. Environ Health Perspect. 1992; 98: 101–105.

    PubMed  CAS  Google Scholar 

  104. Saxena R, Shaw GL, Relling MV, et al. Identification of a new variant CYP2D6 allele with a single base deletion in exon 3 and its association with the poor metabolizer phenotype. Hum Mol Genet. 1994; 3(6): 923–926.

    PubMed  CAS  Google Scholar 

  105. Johansson I, Lundquist E, Bertilsson L, Dahl M-L, Sjoquist F, Ingelman-Sunberg M. Inherited amplification of an active gene in the cytochrome P450 CYP2D6 locus as a cause of ultrarapid metabolism of debrisoquine. PNAS USA. 1993; 90: 11825–11829.

    PubMed  CAS  Google Scholar 

  106. Alexandrie A-K, Sundberg MI, Seidegard J, Tornling G, Rannug A. Genetic susceptibility to lung cancer with special emphasis on CYP1A1 and GSTM1: a study on host factors in relation to age at onset, gender and histological cancer types. Carcinogensis. 1994; 15(9): 1785–1790.

    CAS  Google Scholar 

  107. Rothman N, Stewart WF, Caporaso NE, Hayes RB. Misclassification of genetic susceptibility biomarkers: Implications for case-control studies and cross-population studies. Cancer Epidemiol Biomarkers Prev. 1993; 2: 299–303.

    PubMed  CAS  Google Scholar 

  108. Lin HJ, Han C-Y, Lin BK, Hardy S. Ethnic distribution of slow acetylator mutations in the polymorphic N-acetyltransferase (NATs) gene. Pharmacogenetics. 1994; 4: 125–134.

    PubMed  CAS  Google Scholar 

  109. Philip PA, Fitzgerald DL, Cartwright RA, Peake MD, Rogers HJ. Polymorphic N-acetylation in lung cancer. Carcinogenesis. 1988; 9: 491–493.

    PubMed  CAS  Google Scholar 

  110. Kihara M, Kihara M, Noda K. Lung cancer risk of GSTM1 null genotype is dependent on the extent of tobacco smoke exposure. Carcinogenesis. 1994; 15(2): 415–418.

    PubMed  CAS  Google Scholar 

  111. Vineis P, Bartsch H, Caporaso N, et al. Genetically based N-acetyltransferase metabolic polymorphism and low-level environmental exposure to carcinogens. Nature (London). 1994; 369: 154–156.

    CAS  Google Scholar 

  112. Johnson WR, Hale RW, Clough SC, Chen PH. Chemistry of conversion of nitrate nitrogen to smoke products. Nature (London). 1973; 243: 223–225.

    CAS  Google Scholar 

  113. Benowitz NL. The use of biological fluid analysis in assessing tobacco smoke consumption (National Institute on Drug Abuse, Research Monograph No. 48; DHHS Publ. No (ADM) 83-1285). Rockville, MD: DHHS.

    Google Scholar 

  114. Boyland E, Nice E, Williams K. The catalysis of nitrosation by thiocyanate from saliva. Food Cosmet Toxicol. 1971; 9: 639–643.

    PubMed  CAS  Google Scholar 

  115. Wynder EL, Hoffmann D. Tobacco and tobacco smoke. Studies in experimental carcinogenesis. New York, NY: Academic Press; 1967.

    Google Scholar 

  116. Bodgen JD, Kemp FW, Buse M, et al. Composition of tobaccos from countries with high and low incidences of lung cancer. I. Selenium, polonium-210. JNCI. 1981; 66: 27–31.

    Google Scholar 

  117. Hammond EC, Horn D. Smoking and death rates — report on forty-four months of follow-up of 187,783 men. I. Total mortality. JAMA. 1958; 166: 1159–1172.

    CAS  Google Scholar 

  118. Hammond EC, Horn D. Smoking and death rates — report on forty-four months of follow-up of 187,783. II. Death rates by cause. JAMA 1958; 166: 1294–1308.

    Google Scholar 

  119. Hammond EC. Smoking in relation to death rates of one million men and women. NCI Monogr. 1966; 19: 127–204.

    CAS  Google Scholar 

  120. Rogut E, Murray JL. Smoking and causes of death among US veterans: 16 years of observation. Publ Health Rep. 1980; 95: 213–222.

    Google Scholar 

  121. Siemiatycki J. Introduction to occupational cancer. In: Siemiatycki J. ed. Risk factors for cancer in the workplace. CRC Press; 1991.

    Google Scholar 

  122. Blot WJ, Morris LE, Stroube R, et al. Lung and laryngeal cancer in relation to shipyard employment in coastal Virginia. JNCI. 1980; 65: 571–575.

    PubMed  CAS  Google Scholar 

  123. Thomas TL, Stewart PA. Mortality from lung cancer and respiratory disease among pottery workers exposed to silica and talc. Am J Epidemiol. 1987; 125: 35–43.

    PubMed  CAS  Google Scholar 

  124. Ayesh R, Idle JR, Ritchie JC, Crothers MJ, Hetzel MR. Metabolic oxidation phenotypes as markers for susceptibility to lung cancer. Nature (London). 1984; 312: 169.

    CAS  Google Scholar 

  125. Caporaso N, Pickle LW, Bale S, Ayesh R, Hetzel M, Idle J. The distribution of debrisoquine metabolic phenotypes and implications for the suggested association with lung cancer risk. Genet Epidemiol. 1989; 6: 517–524.

    PubMed  CAS  Google Scholar 

  126. Roots I, Drakoulis N, Ploch M, et al. Debrisoquine hydroxylation phenotype, acetylation phe-notype, and ABO blood groups as genetic host factors of lung cancer risk. Klin Wochenschr. 1988; 66: 87–97.

    PubMed  Google Scholar 

  127. Caporaso NE, Tucker MA, Hoover RN, et al. Lung cancer and the debrisoquine metabolic phenotype. JNCI. 1990; 82: 1264–1272.

    PubMed  CAS  Google Scholar 

  128. Benitez J, Ladero JM, Jara C, et al. Polymorphic oxidation of debrisoquine in lung cancer patients. Eur J Cancer. 1991; 27: 2158–2161.

    Google Scholar 

  129. Wolf RC, Smith CAD, Gough AC, et al. Relationship between debrisoquine hydroxylase polymorphism and cancer susceptibility. Carcinogenesis. 1992; 13: 1035–1038.

    PubMed  CAS  Google Scholar 

  130. Horsmans Y, Desager JP, Harvengt C. Is there a link between debrisoquine oxidation phenotype and lung cancer susceptibility? Biomed Pharmacother. 1991; 45: 359–362.

    PubMed  CAS  Google Scholar 

  131. Puchetti V, Faccini GB, Micciolo R, Ghimenton F, Bertrand C, Zatti N. Dextromethorphan test for evaluation of congenital predisposition to lung cancer. Chest. 1994; 105: 449–453.

    PubMed  CAS  Google Scholar 

  132. Duche JC, Joanne C, Barre J, at al. Lack of relationship between the polymorphism of debrisoquine oxidation and lung cancer. Br J Clin Pharmac. 1991; 31: 533–536.

    CAS  Google Scholar 

  133. Tefre T, Daly A, Armstrong M, et al. Genotyping of the CYP2D6 gene in Norwegian lung cancer patients and controls. Pharmacogenetics. 1994; 4 (2): 47–57.

    Google Scholar 

  134. Law MR, Hetzel MR, Idle JR. Debrisoquine metabolism and genetic predisposition to lung cancer. Br J Can. 1989; 59: 686–687.

    CAS  Google Scholar 

  135. Shaw GL, Falk RT, Tucker MA, et al. Debrisoquine metabolism and lung cancer risk. Proc AACR. 1994; 35: 1753.

    Google Scholar 

  136. Hirvonen A, Husgafvel-Pursiainen K, Anttila S, Karjalainen A, Pelkonen O, Vainio H. PCR-based CYP2D6 genotyping for Finnish lung cancer patients. Pharmacogenetics. 1993; 3: 19–27.

    PubMed  CAS  Google Scholar 

  137. Zhong S, Howie AF, Ketterer B, et al. Glutathione 5-transf erase mu locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis. 1991; 12: 1533–1537.

    PubMed  CAS  Google Scholar 

  138. Brockmoller J, Kerb R, Drakoulis N, Nitz M, Roots I. Genotype and phenotype of glutathione 5-transferase class mu isozyme and x in lung cancer patients and controls. 1993; 53: 1004–1011.

    CAS  Google Scholar 

  139. Hayashi S, Watanabe J, Kawajiri K. High susceptibility to lung cancer analyzed in terms of combined genotypes of PA50IA1 and mu-class glutathione S-transferase genes. Jpn J Cancer Res. 1992; 83: 866–870.

    PubMed  CAS  Google Scholar 

  140. Nazar-Stewart V, Motulsky AG, Eaton DL, et al. The glutathione S-transferase μ polymorphism as a marker for susceptibility to lung cancer. Cancer Res. 1993; 53: 2313–2318.

    PubMed  CAS  Google Scholar 

  141. Heckbert SR, Wiess NS, Hornung SK, Eaton DL, Motulsky AG. Glutathione 5-transferase and epoxide hydrolase activity in human leukocytes in relation to risk of lung cancer and other smoking related cancers. JNCI. 1992; 84: 414–422.

    PubMed  CAS  Google Scholar 

  142. Kihara M, Kihara M, Noda K. Lung cancer risk of GSTM1 null genotype is dependent on the extent of tobacco smoke exposure. Carcinogenesis. 1994; 15(2): 415–418.

    PubMed  CAS  Google Scholar 

  143. Seidegard J, DePierre J, Pero RW. Hereditary interindividual differences in glutathione transferase activity towards trans-stilbene oxide in resting human mononuclear leukocytes are due to a particular isoenzyme(s). Carcinogenesis. 1985; 6: 1211–1216.

    PubMed  CAS  Google Scholar 

  144. Nakachi K, Imai K, Hayashi S, Watanabe J, Kawajiri K. Genetic susceptibility to squamous cell carcinoma of the lung in relation to cigarette smoking dose. Cancer Res. 1991; 51: 5177–5180.

    PubMed  CAS  Google Scholar 

  145. Hayashi S, Watanabe J, Kawajiri K. High susceptibility to lung cancer in terms of combined genotypes of P450IA1 and mu-class glutathione S-transferase gene. Jpn J Cancer Res. 1992; 83: 866–870.

    PubMed  CAS  Google Scholar 

  146. Adler I. Primary malignant growths of the lung and bronchi. A pathological and clinical study. New York: Longmans, Green and Co.; 1912.

    Google Scholar 

  147. Wynder EL, Hoffman D. Smoking and lung cancer: Scientific challenges and opportunities. Cancer Res. 1994; 24: 5284–5295.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Caporaso, N.E. (1995). The genetics of lung cancer. In: Ponder, B.A.J., Waring, M.J. (eds) The Genetics of Cancer. Cancer Biology and Medicine, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0677-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0677-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4294-9

  • Online ISBN: 978-94-011-0677-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics