Skip to main content

Molecular Genetics in Cardiology

  • Chapter
Cardiovascular Genetics for Clinicians

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 239))

  • 60 Accesses

Abstract

Genetics and genomics are being introduced rapidly into clinical practice. Knowledge on genes and gene defects, gene expression and gene products are being gathered as part of the recently completed human genome project at a rapid pace [1,2]. The genetic cause of the vast majority of important monogenie disorders is known, the more rare disorders are being unravelled fast. Technical developments enable molecular geneticists an accelerated and detailed characterization of genetic defects, predisposition or background of individual patients. The introduction of genetic tests for heritable cardiac abnormalities is of a recent nature. Disorders, like the Long QT-syndrome, Brugada syndrome or hypertrophic and dilated cardiomyopathies have only recently been unravelled and research is ongoing to improve DNA-diagnostics [3,4], Genetic testing offers many opportunities, but also a considerable number of risks and uncertainties, and introduction in the clinic has to be performed with great care. Not every test that can be done, should be done. It is evident that genetic testing must be beneficial for the patient. If he or she is affected, then the test can either be performed to make or confirm a diagnosis or to predict prognosis and adjust treatment. It is clear that a genetic test affects not only the patient involved, but also concems relatives or future off spring. Even if patients are unaffected, it is possible to determine their genetic status and to predict what the chances will be of developing symptoms in the years to follow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International Human Genome Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409:860–921.

    Article  Google Scholar 

  2. Venter J.C., Adams M.D., Myers E.M., et al. The sequence of the human genome. Science 2001; 291:1304–51.

    Google Scholar 

  3. Priori S.G., Barhanin J., Hauer R.N.W., et al. Genetic and molecular basis of cardiac arrhythmias: impact on clinical management. Part 1 and 11. Circulation 1999; 99:518–28.

    Article  PubMed  CAS  Google Scholar 

  4. Jongbloed R.J.E., Wilde A.A.M., Geelen J.L.M.C., et al. Novel KCNQ1 and HERG missense mutations in Dutch Long-QT families. Hum Mutat 1999; 13:301–10.

    Article  PubMed  CAS  Google Scholar 

  5. Strachan T., Read A.P. Human Molecular Genetics; 2nd edition. Oxford: Bios Scientific Publishers 1999.

    Google Scholar 

  6. Priori S.G., Napolitano C., Schwartz P.J. Low penetrance in the Long-QT syndrome. Clinical impact. Circulation 1999; 99:529–33.

    CAS  Google Scholar 

  7. Priori S.G. Long QT and Brugada syndromes: from genetics to clinical management. J Cardiovasc Electrophysiol 2000; 11: 1174–8.

    Article  PubMed  CAS  Google Scholar 

  8. Bezzina C., Veldkamp M.W., Van den Berg M.P., et al. A single Na+ channel mutation causing both long-QT and Brugada syndromes. Circ Res 1999; 85: 1206–13.

    Article  PubMed  CAS  Google Scholar 

  9. Bezzina C.R., Rook M.B., Wilde A.A.M. Cardiac sodium channel and inherited arrhythmia syndromes. Cardiovasc Res 2001; 49:257–71.

    Article  PubMed  CAS  Google Scholar 

  10. Neyroud N., Tesson F., Denjoy I., et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 1997; 15:186–9.

    Article  PubMed  CAS  Google Scholar 

  11. Towbin J.A., Lipshultz S.E. Genetics of neonatal cardiomyopathy. Curr Op Cardiol 1999; 14:250–62.

    Article  CAS  Google Scholar 

  12. Reik W., Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001; 2:21–32.

    Google Scholar 

  13. Haines J.I., Pericak-Vance M.A., eds. Approaches to gene mapping in complex human diseases. New York: Wiley-Liss 1998.

    Google Scholar 

  14. Bonne G., Carrier L., Richard P., Hainque B., Schwartz K. Familial Hypertrophic Cardiomyopathy. From mutations to functional defects. Circ Res 1998; 83:580–93.

    Article  PubMed  CAS  Google Scholar 

  15. Nicol R.L., Frey N., Olson E.N. From the sarcomere to the nucleus: Role of genetics and signaling in structural heart disease. Annu. Rev. Genomics Hum Genet 2000; 01: 179–223.

    Article  CAS  Google Scholar 

  16. Wilde A.A.M., Roden D.M. Predicting the long-QT genotype from clinical data. From sense to science. Circulation 2000; 102:2796–8.

    Google Scholar 

  17. Hawkins J.R. Finding mutations, the basics. Oxford University Press 1997.

    Google Scholar 

  18. DeCoo I.F.M., Gussinklo T., Arts P.J.W., Oost van B.A., Smeets HJM. A PCR test for progressive extemal ophthalmoplegia and Keams-Sayre syndrome on DNA from blood sampies. J Neur Sci 1997; 149:37–40.

    Article  CAS  Google Scholar 

  19. Underhill P.A., Jin L., Lin A.A., et al, Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res 1997; 10:996–1005.

    Google Scholar 

  20. Bosch van den B.J.C., Coo de R.F.M, Scholte H.R., et al. Mutation analysis of the entire mitochondrial genome using denaturing high performance liquid chromatography. Nucl Acids Res 2000; 28:89–96.

    Article  Google Scholar 

  21. Lipshutz R.J., Fodor S.P.A., Gingeras T.R., Lockhart D.J. High density synthetic oligonucleotide arrays. Nature Genet 1999 21 suppl:20–5.

    Article  PubMed  CAS  Google Scholar 

  22. Young R.A. Biomedical discovery with DNA arrays. Cell 2000; 102:9–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mannens, M.M.A.M., Smeets, H.J.M. (2001). Molecular Genetics in Cardiology. In: Doevendans, P.A., Wilde, A.A.M. (eds) Cardiovascular Genetics for Clinicians. Developments in Cardiovascular Medicine, vol 239. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1019-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1019-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3888-1

  • Online ISBN: 978-94-010-1019-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics