Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 2))

Abstract

The optical properties of point defects are frequently the most important parameter in applications of glassy silica. They are relatively easy to measure on standard spectrophotometers and yield direct information on the quality of practical silica-based devices, e.g., attenuation of fiber-optic waveguides or ultraviolet (UV)- transmitting windows. However, optical measurements alone usually do not give enough information to establish the origin and atomic structure of the respective point defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griseom, D.L. (2000) The natures of point defects in amorphous silicon dioxide, This volume.

    Google Scholar 

  2. Griscom, D.L. (1991) Optical Properties and Structure of Defects in Silica Glass, J. of the Ceramic Society of Japan 99, 923–942.

    Article  CAS  Google Scholar 

  3. Neustruev, V.B. (1994) Colour centres in germanosilicate glass and optical fibers, J. Phys.: Condens.Matter 6, 6901–6936.

    Article  CAS  Google Scholar 

  4. Skuja, L. (1998) The nature of optically active oxygen-deficiency-related centers in amorphous silicon dioxide, J. Non-Cryst. Solids 239, 16–48.

    Article  CAS  Google Scholar 

  5. Pacchioni, G. and Ierano, G. (1998) Ab initio theory of optical transitions of point defects in SiO2-Phys.Rev. B57 818–832.

    Google Scholar 

  6. For simplicity, only one normal coordinate at a time is considered, usually the one corresponding to the largest vibrational quantum. The shape of the complete spectrum corresponds to convolution of spectral shapes obtained by analysis of each individual configuration coordinate.

    Google Scholar 

  7. For vibrational quantum size of 0.1 eV, 98% of oscillators are in their ground state at T=293 K.

    Google Scholar 

  8. Skuja, L., Suzuki, T., and Tanimura, K.(1995) Site-selective laser spectroscopy studies of the intrinsic 1.9 eV luminescence center in glassy SiO2, Phys.Rev. B52, 15208–15216.

    Google Scholar 

  9. Rolfe, T., Lipsett, F.R., and King, WJ. (1961) Optical absorption and fluorescence of oxygen in alkali halide crystals, Phys. Rev. 123, 447–454.

    Article  CAS  Google Scholar 

  10. Sakurai Y., and Nagasawa, K. (2000) Correlation between the 1.5 eV photoluminescence-band and the 3.8 eV absorption band in silica glass, J. Non-Cryst. Solids 261, 21–27

    Article  CAS  Google Scholar 

  11. Insome papers the reciprocal value of transmittance, called opacity (O=I/T) is used.

    Google Scholar 

  12. Thedipole operator is assumed here to be parallel to E-vector of the light wave, i.e., D denotes the maximum value of the matrix element. The random orientation of the absorbing dipoles is accounted for by a factor of 3 in denominator. Some textbooks omit this factor, implying that the matrix element D is an average over all orientations of the center.

    Google Scholar 

  13. Stoneham, A.M. (1975) Theory of Defects in Solids, Clarendon Press, Oxford.

    Google Scholar 

  14. Smith, O.Y. and Dexter D.L.(1973) Progress in Optics 10,107.

    Google Scholar 

  15. Hayes W., Stoneham A.M., (1985) Defects and defect processes in nonmetallic solids, Wiley, N.Y.

    Google Scholar 

  16. Rebane, K.K. (2000) Zero-phonon selective spectroscopy: where do we stand now? J. Luminescence 86, 167–174.

    Article  CAS  Google Scholar 

  17. There is a large number of published papers. Only a few representative references are cited here.

    Google Scholar 

  18. Trukhin, A.N., Fitting, H-J., Barfels, T., and Von Czarnowski, A. (1999) Cathodoluminescence and ir absorption of oxygen-deficient silica—influence of hydrogen treatment, Radiation effects and defects in solids 149 61–68.

    Article  CAS  Google Scholar 

  19. Stevens Kalceff, M.A., Phillips, M.R., and Moon, A.R. (1996) Electron irradiation-induced changes in the surface topography of silicon dioxide, J. Appl Phys. 80, 4309–4314.

    Google Scholar 

  20. Williams, D.L., Wilson, M.J., and Ainslie, B.J. (1992) Spectral and spatial study of photosensitive optical fibre preforms by cathodoluminescence, Electronics Letters 28 1744–1746.

    Article  Google Scholar 

  21. Morimoto, Y., Weeks, R.A., Barnes, A.V., Tolk, N.H., and Zuhr, R.A. (1996) Electron dose dependence and oxygen implantation effect on cathodoluminescence intensity in synthetic silica glasses, J. Non-Cryst. Solids 203 62–68.

    Article  CAS  Google Scholar 

  22. Stevens-Kalceff, M.A. (2000) Electron-irradiation-induced radiolytic oxygen generation and microsegregation in silicon dioxide polymorphs, Phys. Rev. Lett. 84 3137–3140.

    Article  CAS  Google Scholar 

  23. Miller, A.J., Leisure, R.G., and Austin, W.R. (1999) X-ray induced luminescence of high-purity, amorphous silicon dioxide, J. Appl. Phys. 86 2042–2050.

    Article  CAS  Google Scholar 

  24. Martini, M., Meinardi, F., Rosetta, E., Spinolo, G., Vedda, A., Leray, J. L., Paillet, Ph., Autran, J.L., and Devine, R.A.B. (1998) Radiation induced trap levels in SIMOX oxides: low temperature thermally stimulated luminescence, IEEE Trans. Nucl Sci. 45 1396–1401.

    Article  CAS  Google Scholar 

  25. Martini, M. and Meinardi, F. (1997) Thermally stimulated luminescence: new perspectives in the study of defects in solids, La Rivista del Nuovo Cimento 20 1–71.

    Article  CAS  Google Scholar 

  26. Kinoshita, T., Yamazaki, M., Kawazoe, H., and Hosono, H. (1999) Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses, J. Appl. Phys. 86 3729–3733.

    Article  CAS  Google Scholar 

  27. Garrido, B., Samitier, J., Bota, S., Moreno, J.A., and Morante, J.R. (1997) Reconstruction of the SiO2 structure damaged by low-energy Ar-implanted ions, J. Appl. Phys. 81 126–134.

    Article  CAS  Google Scholar 

  28. Streletsky, A.N., Pakovich, A.B., Butyagin, P.Yu. (1986) Structural defects and the excitation of triboluminescence in amorphous silicon dioxide, Izvestiya AN SSSR, phys. series 50 477–482.

    Google Scholar 

  29. Kawaguchi, Y. (1995) Time-resolved fractoluminescence spectra of silica glass in a vacuum and nitrogen atmosphere, Phys. Rev. B52 9224–9228.

    Google Scholar 

  30. Here it is assumed that refraction coefficient n remains constant in the regions of absorption or emission. In a more exact treatment, absorption spectrum must be divided by [1/n ×(Eef/E0)2] and emission spectrum by [n ×(Eef/E0)2].

    Google Scholar 

  31. To correct for dispersion, the as-measured emission spectra should be multiplied by X2 when changing from wavelength [(dI/dβ)] to energy [d1/d(hw)] representation.

    Google Scholar 

  32. Lakowitcz, J.R. (1983) Principles of fluorescence spectroscopy, Plenum, New York and London.

    Book  Google Scholar 

  33. Birks, J.B. (1970) Photophysics of aromatic molecules, Wiley Interscience, London.

    Google Scholar 

  34. Note that—unlike the case of Smakulas f-la (see Fig.4B)-the correction term dependent on n is quite large here (n(Eef/E0)2~2). However, it has been often overlooked, affecting the calculated f values.

    Google Scholar 

  35. Bolton, J.R., Archer, M.D.(1991) Calculation of natural radiative lifetimes from the absorption and fluorescence properties of semiconductors and molecules, J.Phys.Chem. 95 8453–8461.

    Article  CAS  Google Scholar 

  36. Kikas, J. (1988) Spectral Hole burning (SHB):Scientific and practical applications, in O. Sild and K. Haller (eds), Zero-phonon lines and spectral hole burning in spectroscopy and photochemistry, Springer, Berlin-Heidelberg, N.Y, pp.89–101.

    Chapter  Google Scholar 

  37. Nogami, M. and Hayakawa, T. (1997) Persistent spectral hole burning of sol-gel-derived Eu3+-doped SiO2 glass, Phys.Rev. B56 R14235-238.

    Google Scholar 

  38. Nogami M. (1999) Persistent spectral hole burning of Sm2+ and Eu3+ ions in sol-gel derived glasses, J. Non-Cryst. Solids 259 170–175.

    Article  CAS  Google Scholar 

  39. Skuja, L. (1994) The origin of the intrinsic 1.9 eVluminescence band in glassy SiO2, J.Non-Crystalline Solids 179 51–69.

    Article  CAS  Google Scholar 

  40. Skuja, L., Tanimura, K., and Itoh, N. (1996) Correlation between the radiation-induced intrinsic 4.8 eV optical absorption and 1.9 eV photoluminescence bands in glassy SiO2, J. Appl. Phys. 80 3518–3525.

    Article  CAS  Google Scholar 

  41. There are two basic types of silicon oxygen deficiency centers, denoted by SiODC(I) and SiODC(II). They have a absorption bands at 7.6 and 5.0 eV respectively. Abbreviature SiODC or ODC without Roman numeral usually means SiODC(II).

    Google Scholar 

  42. Skuja, L. (1994) Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2, J.Non-Cryst. Solids 167 229–238.

    Article  CAS  Google Scholar 

  43. Bagratashvili V.N., Tsypina S.I, Radtsig V.A., Rybaltovskii A.O., Chernov P.V., Alimpiev S.S., Simanovskii Y.A. (1995) Inhomogeneous nature of UV absorption bands of bulk and surface oxygendeficient centers in silica glasses, J.Non-Cryst. Solids 180 221–229.

    Article  CAS  Google Scholar 

  44. Radzig, V.A. Defects on activated silica surface, This volume.

    Google Scholar 

  45. Poumellec, B., Taunay, T., Bernage, P., Cortes, R., Krupa, J.C. (1997) Defect population in silica glasses studied by luminescence VUV excitation spectroscopy, J. of Luminescence 72-74 442–445.

    Article  CAS  Google Scholar 

  46. Weeks R.A. (1956) Paramagnetic resonance of lattice defects in irradiated quartz, J. Appl Phys. 27 1376–1381.

    Article  CAS  Google Scholar 

  47. Weil, J.A., (1984) A Review of Electron Spin Spectroscopy and Its Application to the Study of Paramagnetic Defects in Crystalline Quartz, Phys.Chem.Minerals 10 149–165.

    Article  CAS  Google Scholar 

  48. Azzoni, C.B., Meinardi, F., and Paleari, A. (1994) Trapped-hole centers in neutron-irradiated synthetic quartz, Phys.Rev. B49 9182–9185.

    Google Scholar 

  49. Guzzi M., Pio, F.,Spinolo, G., Vedda, A., Azzoni, C.B., and Paleari, A. (1992) Neutron irradiation effects in quartz: optical absorption and electron paramagnetic resonance, J. Phys. C4 8635–8647.

    Google Scholar 

  50. Corazza, A., Crivelli, B., Martini, M., Spinolo, G., and Vedda, A. (1996) Photoluminescence and optical absorption in neutron-irradiated crystalline quartz, Phys.Rev. B53 9739–9744.

    Google Scholar 

  51. Hobbs, L. and Yuan, X. Topology and topological disorder in silica, This volume.

    Google Scholar 

  52. Radtsig, V.A. (1996) Reactive intermediates on the surface of solids (SiO2 and GeO2): A review of studies and prospects for their development, Chem. Phys. Reports 14 1206–1245.

    Google Scholar 

  53. Loyalka S.K. and Riggs, C.A. (1995) Inverse problem in diffuse reflectance spectroscopy: Accuracy of the Kubelka-Munk equations, Appl. Spectrosc. 49 1107–1110.

    Article  CAS  Google Scholar 

  54. Feigl F.J., Fowler, W.B., and Yip, K.L. (1974) Oxygen vacancy model for the E1 1 center in SiO2, Solid State Comm. 14 225–229.

    Article  CAS  Google Scholar 

  55. Rudra, J.K. and Fowler, W.B. (1987) Oxygen vacancy and the E1 1 center in crystalline SiO2, Phys.Rev. B35 8223–8230.

    Google Scholar 

  56. Weeks, R.A. and Sonder, E. (1963) in W. Low (ed.), Paramagnetic resonance, Vol.2, Academic, N.Y.

    Google Scholar 

  57. Nishikawa, H., Watanabe, E., Ito, D., and Ohki, Y. (1994) Kinetics of enhanced photogeneration of E’ centers in oxygen deficient silica, J.Non-Cryst.Solids 179 179–184.

    Article  CAS  Google Scholar 

  58. Boscaino, R., Cannas, M., Gelardi, F.M., and Leone, M. (1996) ESR and PL centers induced by gamma rays in silica, Nucl. Instr. Meth. Phys. Res. B116 373–377.

    Article  Google Scholar 

  59. This value is based on Lorenz-Lorentz correction for effective field, which may introduce a systematic error of up to 30% (see Section 2.2).

    Google Scholar 

  60. Pacchioni, G., Ieranó, G., and Marquez, A.M. (1998) Optical absorption and non-radiative decay mechanisms of E’ centers in α-quartz, Phys.Rev.Letters 81 377–80.

    Article  CAS  Google Scholar 

  61. Bobyshev, A.A., Radtsig, V.A. (1988) Silanone groups =Si=O on the surface of mechanically activated silicon dioxide, Kinetika i Kataliz 29 638–647.

    CAS  Google Scholar 

  62. Arnold G.W. (1965) Defect structure of crystalline quartz. I Radiation-induced optical absorption, Phys.Rev. 139A 1234–1239.

    Google Scholar 

  63. Hosono, H.,Mizuguchi, M., Kawazoe, H., and Nishii, J. (1996) Correlation between the Ge E’ centers and optical absorption bands in SiO2:GeO2 glasses, Jap. J. Appl. Phys. 35 Part2, L234–L236.

    Article  CAS  Google Scholar 

  64. Guzzi M., Martini, M., Paleari, A., Pio, F., Vedda, A., and Azzoni, C.B. (1993) Neutron irradiation effects in amorphous SiO2: optical absorption and EPR, J. Phys.C 5 8105–8116.

    CAS  Google Scholar 

  65. See ref.[4] for more complete references.

    Google Scholar 

  66. Imai, H., Arai, K., Imagawa, H., Hosono, H., and Abe Y. (1988) Two types of oxygen-deficient centers in synthetic silica glass, Phys Rev. B38 12772–12775.

    Google Scholar 

  67. O’Reilly, E.P., Robertson, J. (1983) Theory of defects in vitreous silicon dioxide, Phys.Rev. B27 3780–95.

    Google Scholar 

  68. Hosono, H., Abe, Y., Imagawa, H., Imai, H., and Arai K. (1991) Experimental evidence for the Si-Si bond model of the 7.6 eV band in SiO2 glass, Phys.Rev. B44 12043–12045.

    Google Scholar 

  69. Pacchioni, G., Ab initio theory of point defects in SiO2, this volume.

    Google Scholar 

  70. This ratio, however, is not constant and can be as low as ~20:l for neutron irradiated glass, see Guzzi, M., Martini, M, Paleari, A., Pio, F., Vedda, A., and Azzoni, C.B. (1993) Neutron irradiation effects in amorphous SiO2: optical absorption and electron paramagnetic resonance, J.Phys. C5 8105–8116.

    Google Scholar 

  71. Hosono, H., Kawazoe, H., and Matsunami, N. (1998) Experimental evidence for Frenkel defect formation in amorphous SiO2 by electronic excitation, Phys. Rev. Lett. 80 317–20.

    Article  CAS  Google Scholar 

  72. Trukhin, A.N. and Fitting, H.-J.(1999) Investigation of optical and radiation properties of oxygen deficient silica glasses, J.Non-Cryst. Solids 248 49–64.

    Article  CAS  Google Scholar 

  73. Trukhin, A.N. (2000), this volume.

    Google Scholar 

  74. Skuja, L. (1992) Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study, J. Non-Cryst. Solids 149 77–95.

    Article  CAS  Google Scholar 

  75. Chiodini, N., Meinardi, F., Morazzoni, F., Paleari, A., Scotti, R., and Di Martino, D. (2000) Photoluminescence of Sn-doped SiO2 excited by synchrotron radiation, J.Non-Cryst. Solids 261 1–8.

    Article  CAS  Google Scholar 

  76. Arnold, G.W. (1974) Ion-implantation effects in noncrystalline SiO2, IEEE Trans, on Nucl.Sci. NS20 220–223.

    Google Scholar 

  77. Snyder, K.C. and Fowler, W.B. (1993) Oxygen vacancy in alpha-quartz: A possible bi-and metastable defect, Phys.Rev. B48 13238–13243.

    Google Scholar 

  78. Boero, M., Pasquarello, A., Sarnthein, J., and Car, R. (1997) Structure and hyperfine parameters of E’ centers in alpha-quartz and in vitreous SiO2, Phys. Rev. Lett. 78 887–890.

    Article  CAS  Google Scholar 

  79. Pacchioni, G., and Ierano, G. (1997) Computed optical absorption and photoluminescence spectra of neutral oxygen vacancies in alpha-quartz, Phys.Rev.Lett. 79 753–756.

    Article  CAS  Google Scholar 

  80. Radtsig, V.A. (1979) Paramagnetic centers on fresh surfaces of quartz. Interactions with molecules of H2 and D2, Kinetika i Kataliz 20 456–464.

    CAS  Google Scholar 

  81. Skuja, L., Streletsky, A.N., and Pakovich, A.B. (1984) A new intrinsic defect defect in amorphous SiO2: Twofold coordinated silicon, Solid State Comm. 50 1069–1072.

    Article  CAS  Google Scholar 

  82. Skuja, L. N., Trukhin, A.N., and Plaudis, A.E. (1984) Luminescence in germanium-doped glassy SiO2, Phys. Stat. Solidi A84 K153–K157.

    Google Scholar 

  83. Pacchioni, G., Ferrario, R. (1998) Optical transitions and EPR properties of two-coordinated Si, Ge, Sn and related H(I), H(II), and H(III) centers in pure and doped silica from ab initio calculations, Phys. Rev. B59 6090–6096.

    Google Scholar 

  84. Zhang, B.L., Raghavachari, K., (1997) Photoabsorption and photoluminescence of divalent defects in silicate and germanosilicate glasses: First principles calculations, Phys. Rev. B55 R15993–R15996.

    Google Scholar 

  85. Allan, D.C., Smith, C, Borelli, N.F., Seward III, N.F. (1996) 193-nm excimer-laser-induced densification of fused silica, Opt. Lett. 21 1960–1962.

    Article  CAS  Google Scholar 

  86. Poumellec, B., Guenot, P., Riant, I., Sansonetti, P., Niay, P., Bernage, P., and Bayon, J. F. (1995) U.V. induced densification during Bragg grating inscription in Ge:SiO2 preform, Opt. Mat. 4 441–449.

    Article  CAS  Google Scholar 

  87. Awazu, K., Onuki, H., and Muta, K. (1997) Mechanisms of photo-bleaching of 5 eV optical absorption band in hydrogen-loaded Ge-doped SiO2, J.Non-Cryst. Solids 211 158–163.

    Article  CAS  Google Scholar 

  88. Goldberg, M., Fitting, H.-J., and Trukhin, A. (1997) Cathodoluminescence and cathodoelectro-luminescence of amorphous SiO2 films, J.Non-Cryst. Solids 220 69–77.

    Article  CAS  Google Scholar 

  89. Nishikawa, H., Tohmon, R., Ohki, Y., Nagasawa, K., and Hama, Y. (1989) Defects and optical absorption bands induced by surplus oxygen in high-purity synthetic silica, J. Appl.Phys. 65 4672–78.

    Article  CAS  Google Scholar 

  90. Awazu K. and Kawazoe, H. (1994) Gaseous species and their photochemical reaction in SiO2, J. Non-Cryst. Solids 179 214–225.

    Article  CAS  Google Scholar 

  91. Sakurai, Y., Nagasawa, K. (2000) Correlation between the 1.5 eV photoluminescence-band and the 3.8 eV absorption band in silica glass, J. Non-Cryst. Solids 261 21–27.

    Article  CAS  Google Scholar 

  92. Ault, B.S., Howard, W.F., Jr., and Andrews, L. (1975) Laser-induced fluorescence and Raman spectra of chlorine and bromine molecules isolated in inert matrices, J. Mol. Spectrosc. 55 217–228.

    Article  CAS  Google Scholar 

  93. The spectral shift between the maximum positions of envelopes of spectra (A) and (B) is explained by the different IR spectral sensitivity of detectors used: a photomultiplier [92] and a CCD camera [91].

    Google Scholar 

  94. Maric, D., Burrows, J.P., Meller, R., and Moortgat, G.K. (1993) J. Photochem. Photobiol A70 205–214.

    Article  Google Scholar 

  95. Awazu, K., Kawazoe, H., Muta, K., Ibuki, T., Tabayashi, K., and Shobatake K. (1991) Characterization of silica glasses, sintered under Cl2 ambients, J. Appl Phys. 69 1849–1852.

    Article  CAS  Google Scholar 

  96. Morimoto, Y., Igarashi, T., Sugahara, H., and Nasu, S. (1992) Analysis of gas release from vitreous silica, J. Non-Cryst. Solids 139 35–46.

    Article  CAS  Google Scholar 

  97. Shelby, J.E.(1994) Protonic species in vitreous silica, J. Non-Cryst. Solids 179 138–147.

    Google Scholar 

  98. Carvalho, W., Dumas, P., Corset, J., and Neuman, V.(1985) Raman Spectra and Oxygen-Related Absorption Bands in Pure Silica Core Fibres, J. Raman Spectrosc. 16 330–331.

    Article  CAS  Google Scholar 

  99. Skuja, L., Güttler, B., Schiel, D., and Silin, A.R. (1998) Quantitative analysis of the concentration of interstitial O2 molecules in SiO2 glass using luminescence and Raman spectrometry, J. Appl. Physics 83 6106–6110.

    Article  CAS  Google Scholar 

  100. Okabe, H. (1978) Photochemistry of small molecules, Wiley Interscience, New York.

    Google Scholar 

  101. Krupenie, P.H. (1972) The spectrum of molecular oxygen, J. Phys. Chem. Ref. Data 1 423–533

    Article  CAS  Google Scholar 

  102. Heitmann, W., Bonewitz, H.U., and Miihlich, A. (1983) New absorption bands in pure and F-doped silica optical fibers, Electronics Lett. 19 616–617.

    Article  Google Scholar 

  103. Skuja, L. and Guttler, B. (1996) Detection of interstitial oxygen molecules in SiO2 glass by a direct photoexcitation of the infrared luminescence of singlet O2, Phys. Rev. Lett. 77 2093–2096.

    Article  CAS  Google Scholar 

  104. Skuja, L., Guttler, B., and Schiel, D. (1998) Interstitial O2 molecules in SiO2-based glasses, Glastechnische Berichte-Glass Science and Technnology 71C 73–78.

    Google Scholar 

  105. Skuja, L., Guttler, B., Schiel, D., and Silin, A.R. (1998) Infrared photoluminescence of pre-existing or radiation-induced interstitial oxygen molecules in glassy SiO2 and α-quartz, Phys.Rev. B58 14296–14304.

    Google Scholar 

  106. Silin, A.R., Skuja, L.N., and Shendrik, A.V. (1978) Radiation-induced intrinsic defects in glassy SiO2: Non-bridging oxygen, Sov.Phys.Chem.Glass 4 405–410.

    Google Scholar 

  107. Stathis, J.H. and Kastner, M.A. (1984) Vacuum ultraviolet generation of luminescence and absorption centres in a-SiO2, Phil Mag. B49 357–362.

    Article  Google Scholar 

  108. Skuja, L., Hirano, M., and Hosono, H. (2000) Oxygen-related intrinsic defects in glassy SiO2: Interstitial ozone molecules, Phys. Rev. Lett. 84 302–305.

    Article  CAS  Google Scholar 

  109. Stathis, J.H., (1984) Optically induced metastable defect states in amorphous silicon dioxide, PhD. thesis, Massachusetts Institute of Technology. See also Fig. 18 in ref. [2].

    Google Scholar 

  110. Hamann, D.R. (1998) Diffusion of atomic oxygen in SiO2, Phys. Rev.Lett. 81 3447–3450.

    Article  CAS  Google Scholar 

  111. Imai, H., Arai, K., Saito, T., Ichimura, S., Nonaka, H., Vigoroux, J.P., Imagawa, H., Hosono, H., and Abe, Y. (1987) UV and VUV optical absorption due to intrinsic and laser induced defects in synthetic silica glasses, in R.A.B. Devine (ed.), The Physics and Technology of Amorphous SiO2, Plenum, New York,pp. 153–159.

    Google Scholar 

  112. Friebele, E.J., Griscom, D.L., Stapelbroek, M., and Weeks, R.A. (1979) Fundamental defct centers in glass: The peroxy radical in irradiated, high-purity, fused silica, Phys.Rev. Lett. 42 1346–1349.

    Article  CAS  Google Scholar 

  113. Stapelbroek, M., Griscom, D.L., Friebele, E.J., and Sigel, G.H., Jr. (1979) Oxygen-associated trapped-hole centers in high-purity fused silicas, J. Non-Cryst. Solids 32 313–326.

    Article  CAS  Google Scholar 

  114. Hosono, H., and Skuja, L., manuscript in preparation.

    Google Scholar 

  115. Fenter, F.F., Catoire, V., Lesclaux, R., and Lightfoot P.D. (1993) The ethylperoxy radical: Its ultraviolet spectrum, self-reaction, and reaction with HO2 J. Phys. Chem. 97 3530–3538.

    Article  CAS  Google Scholar 

  116. Hosono, H. and Weeks, R.A. (1990) Bleaching of peroxy radical in SiO2 glass with 5 eVlight, J. Non-Cryst. Solids 116 289–292.

    Article  CAS  Google Scholar 

  117. Griscom, D.L. and Mizuguchi, M.(1997) Determination of the visible-range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica, J. Non-Cryst. Solids 239 66–77.

    Article  Google Scholar 

  118. Bobyshev, A.A. and Radtsig, V.A. (1988) Optical absorption spectra of paramagnetic defects in glassy SiO2, Sov. Phys. Chem. Glass 14 501–507.

    CAS  Google Scholar 

  119. A complete degeneracy will not occur: this actually becomes a Jahn-Teller system, and the degeneracy will be spontaneously removed by coupling to the bending vibrations of NBOHC.

    Google Scholar 

  120. Griscom, D.L. (1978) Defects in amorphous insulators, J. Non-Cryst Solids 31 241–266.

    Article  CAS  Google Scholar 

  121. Mizuguchi, M. (2000) Defect formation in transparent materials for vacuum uv optics by energetic photon beams, Ph.D. thesis, Tokyo Institute of Technology.

    Google Scholar 

  122. Radtsig, V.A. and Bistrikov, A.B. (1978) Study of chemically active centers on the surface of quartz using EPR, Kinetika i Kataliz (Sov. Kinetics and Catalysis) 19 713–718.

    CAS  Google Scholar 

  123. This estimate of the oscillator strength is based on the the 1.9 eV PL radiative decay constant of 20 μs and exact measurements of the ratio between 4.8 and 2.0 eV absorption band integrals performed on F2 laser irradiated “wet” silica [125]. The estimate is based on eq.(33) and (24). It is lower than the previously published estimates of f= 0.1—0.2.

    Google Scholar 

  124. Streletsky, A.N., Pakovich, A.B., Gachkovskii, V.F., Aristov, Yu.L, Rufov, Yu.N., and Butyagin P.Y. (1982) Luminescent properties of mechanical defects on surface of quartz, Khim.Fizika (Sov. Chem.Phys.), Issue No.7 938-946.

    Google Scholar 

  125. Ichimura, T. and Hosono, H. (2000), Tokyo Institute of Technology, to be published.

    Google Scholar 

  126. Galeener, F.L., Leadbetter, A.J., and Stringfellow, M.W. (1983) Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2, Phys. Rev. B27 1052–1078.

    Google Scholar 

  127. Skuja, L., Hosono, H., Mizuguchi, M., Guttler, B., and Silin, A. R. (2000) Site-selective study of the 1.8 eV luminescence band in glassy GeO2, J. of Luminescence 87-89 699–701.

    Article  CAS  Google Scholar 

  128. Nagasawa, K., Hoshi, Y., Ohki, Y., and Yahagi, K. (1986) Radiation effects in pure silica core fibers by gamma-rays: Relation between 2 eVband and non-bridging oxygen centers, Jap. J. Appl. Phys. 25 464–468.

    Article  CAS  Google Scholar 

  129. Devine, R.A.B., Fiori, C, and Robertson, J. (1986) The influence of irradiation temperature on U.V. induced defect creation in dry silica, in F.L. Galeener, D.L. Griscom, and MJ. Weber (eds.), Defects In Glasses, Mater.Res.Soc.Symposia proceedings, vol. 61, pp. 177–185.

    Google Scholar 

  130. Hosono, H., Mizuguchi, M., Kawazoe, H., and Ogawa, T. (1999) Effects of fluorine dimer excimer laser irradiation on the optical transmission and defect formation of various types of synthetic SiO2 glasses, Appl Phys. Lett. 74 2755–2757.

    Article  CAS  Google Scholar 

  131. Friebele E.J., Griscom, D.L., and Marrone, M.J. (1985) The optical absorption and luminescence bands near 2 eV in irradiated and drawn synthetic silica, J. Non-Cryst. Solids 71 133–144.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Skuja, L. (2000). OPTICAL PROPERTIES OF DEFECTS IN SILICA. In: Pacchioni, G., Skuja, L., Griscom, D.L. (eds) Defects in SiO2 and Related Dielectrics: Science and Technology. NATO Science Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0944-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0944-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6686-7

  • Online ISBN: 978-94-010-0944-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics