Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 2))

Abstract

Perhaps no other technology developed in the 20th century plays such an important role on the daily life of today’s civilized society as microelectronics. The rapid growth experienced by complementary-metal-oxide-semiconductor (CMOS) technology since the first metal-oxide semiconductor field effect transistor (MOSFET) was realized by Kahng [1] some 40 years ago, accompanied by the advances in integrated circuit (IC) fabrication, has been revolutionizing the field of electronics. The past thirty years have also witnessed tremendous progress toward the miniaturization of CMOS devices, a trend that continues toward further downscaling of the device feature size. While miniaturization of CMOS devices has resulted in higher packing density (more devices per unit area), higher circuit speed (faster computers), and lower power dissipation, it has also created new problems and issues that need resolution for the reliability of the contemporary and future generation technology. In order to appreciate the problems and reliability issues associated with the steady downscaling of CMOS devices, a schematic design of a MOSFET is shown in Fig. 1. The top metal, generally a polycrystalline-silicon (poly-Si) acts as a gate. A thin amorphous SiO1 dielectric layer underneath the gate electrode, normally referred to as the “gate oxide”, lies above the channel regions which separates the “source” (carrier donor) and the “drain” (carrier acceptor) layers. The distance between the source and the drain under the gate dielectric is called the “channel length”. Upon biasing the gate electrode, an image charge builds up under the gate initially forming a “depletion region” and eventually at a certain voltage (called the threshold voltage, Vth) inverts the silicon surface and current starts flowing in the channel between the source and the drain. “Decreasing the feature size” of MOSFET generally means reducing the channel length. The shorter the channel length, the faster the carrier flow and the higher the drive current resulting in higher speed. Also, continued reduction in the supply voltage has lowered power consumption. Of course with the miniaturization of the device components, the primary benefit is that much larger numbers of transistors can be integrated per unit area on the wafer, thus increasing the device density in very large integrated circuits (VLSI). Such desirable features have been the driving force toward miniaturization of the MOSFET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Kahng, U.S. Patent 3102230 (1960).

    Google Scholar 

  2. Semiconductor Industry Roadmap, 1998.

    Google Scholar 

  3. D. A. Muller, T. Sorsch, S. Moccio, F. H. Bauman, K. Evans-Lutterodt, and G. Timp (1999), Nature 399, 78.

    Article  Google Scholar 

  4. J. H. Stathis and D. J. Dimaria, IEDM Tech. Dig. 1998, 167; J. Stathis and D. J. Dimaria (1999), Microelectron. Engg. 48, 395.

    Google Scholar 

  5. Y. Nishi (1966), Japan. J. AppL Phys. 5, 333.

    Article  CAS  Google Scholar 

  6. E. H. Poindexter, P. J. Caplan, B. E. Deal, and R. R. Razouk, (1981), J. Appl. Phys. 52, 879 (1981).

    Article  CAS  Google Scholar 

  7. K. L. Brower (1983), Appl. Phys. Lett. 43, 563.

    Article  Google Scholar 

  8. N. M. Johnson, D. K. Giegelsen, M. D. Moyer, S. T. Chang, E. H. Poindexter, and P. J. Caplan (1983), Appl. Phys. Lett. 43, 563; A. Stesmans (1986), AppL Phys. Lett. 48, 972 (1986); G. J. Gerardi, E. H. Poindexter, P. J. Caplan, n. M. Johnson (1986), Appl. Phys. Lett. 49, 348; A. Stesmans and G. Van Grop (1990), Appl. Phys. Lett. 57, 2663.

    Article  CAS  Google Scholar 

  9. P. M. Lenahan and P. V. Dressendorfer (1984), Appl. Phys. Lett. 44, 96.

    Article  CAS  Google Scholar 

  10. H. S. Witham and P. M. Lenahan (1987), Appl. Phys. Lett. 51, 1007.

    Article  CAS  Google Scholar 

  11. P. Blak (1965) Electrochemical Society Annual Meeting, ECS Extended Abstract No. 109, p. 238; P. Balk (1999), Microelctron. Engg. 48, 3.

    Google Scholar 

  12. K. L. Brower (1988), Phys. Rev. B 38, 9657; K. L. Browers and S. M. Myers (1990), Appl. Phys. Lett. 57, 162; K. L. Brower (1990), Phys. Rev. B 42, 3444.

    Article  CAS  Google Scholar 

  13. F. J. Figl, R. Gale, H. Chew, C. W. Magee, and D. R. Young (1984), Nucl. Instrum. and Meth. B 1, 348.

    Google Scholar 

  14. E. Cartier, D. A. Buchanan, J. H. Stathis, and D. J. Maria (1995), J. Non-Cryst. Solids 187, 244.

    Article  CAS  Google Scholar 

  15. A. Stesmans and V. V. Amas’ev (1998), Appl. Phys. Lett. 72, 2271.

    Article  CAS  Google Scholar 

  16. R. B. Laughlin, J. D. Joannopoulos, and J. D. Chadi (1980), Phys. Rev. B 21, 5733.

    Article  CAS  Google Scholar 

  17. K. L. Nagi and C. T. White (1981), J. Appl. Phys. 52, 320.

    Article  CAS  Google Scholar 

  18. T. Sakurai and T. Sugano (1981), J. Appl. Phys. 52, 2889.

    Article  CAS  Google Scholar 

  19. A. S. Carrico, R. J. Elliott, and R. A. Barrio (1986), Phys. Rev. B 34, 872.

    Article  CAS  Google Scholar 

  20. M. A. Cook and C. T. White (1987), Phys. Rev. Lett. 59, 1741.

    Article  CAS  Google Scholar 

  21. M. A. Cook and C. T. White (1988), Phys. Rev. B 38, 9674.

    Article  CAS  Google Scholar 

  22. A. Pasquerello, M. S. Hybertson, and R. Car (1998), Nature 396, 58.

    Article  Google Scholar 

  23. C. Kaneta, T. Yamasaki, T. Uchiyama, T. Uda, and K. Terakura (1999), Microelcron, Engg. 48, 117.

    Article  CAS  Google Scholar 

  24. A. Rodando, W. A. Goddard III, T. C. McGill, and G. T. Surrat (1976), Solid State Commun. 20, 733.

    Article  Google Scholar 

  25. A. Rodando, W. A. Goddard III, and T.C. McGill (1982), J. Vac. Sci. Technol. 21, 649.

    Article  Google Scholar 

  26. Y. Bar-Yam and J. D. Joannopolus (1986), Phys. Rev. Lett. 56, 2203.

    Article  CAS  Google Scholar 

  27. W. B. Fowler and R. J. Elliott (1986), Phys. Rev. B 34, 5525.

    Article  Google Scholar 

  28. A. H. Edwards (1987), Phys. Rev. B 36, 9638.

    Article  CAS  Google Scholar 

  29. S. P. Karna and H. A. Kurtz (1999), Microelectron. Engg. 48, 109.

    Article  CAS  Google Scholar 

  30. S. P. Karna, H. A. Kurtz, W. M. Shedd, R. D. Pugh, and B. K. Singaraju (1999), IEEE Trans. Nuc. Sci. 46, 1544.

    Article  CAS  Google Scholar 

  31. R. A. Weeks (1994), J. Non-Cryst. Solids 179, 1.

    Article  CAS  Google Scholar 

  32. R. A. Weeks (1956), J. Appl. Phys. 27, 1376.

    Article  CAS  Google Scholar 

  33. D. L. Griscom, E. J. Frieble, and G. H. Sigel, Jr. (1974), Solid State Commun. 15,479.

    Article  Google Scholar 

  34. F. J. Feigl, W. B. Fowler, and K. L. Yip (1974), Solid State Commun. 14, 225.

    Article  CAS  Google Scholar 

  35. D. L. Griscom (1979), Phys. Rev. B 20, 1823; D.L Griscom (1980), Phys. Rev. B 22, 4192.

    Article  CAS  Google Scholar 

  36. M. G. Jani, R. B. Bossoli, and L. E. Halliburton (1983), Phys. Rev B 27, 2285.

    Article  CAS  Google Scholar 

  37. P. M. Lenahan and P. V. Dressendorfer (1984), J. Appl. Phys. 55, 3495.

    Article  CAS  Google Scholar 

  38. K. L. Yip and W. B. Fowler (1975), Phys. Rev. B. 11, 2327.

    Article  CAS  Google Scholar 

  39. J. K. Rudra and W. B. Fowler (1987), Phys. Rev. B 35, 8223.

    Article  CAS  Google Scholar 

  40. A. H. Edwards, W. B. Fowler, and F. J. Feigel (1988), Phys. Rev. B 37, 9000.

    Article  CAS  Google Scholar 

  41. A. H. Edwards and W. B. Fowler (1990), Phys. Rev. B 41, 10816.

    Article  Google Scholar 

  42. K. C. Snyder and W. B. Fowler (1993), Phys. Rev. B 48, 13238.

    Article  CAS  Google Scholar 

  43. M. Boero, A. Pasquarello, J. Sternthein, and R. Car (1997), Phys. Rev. Lett. 78, 887.

    Article  CAS  Google Scholar 

  44. G. Pacchioni and G. Ieranò (1997), Phys. Rev. Lett. 79, 753.

    Article  CAS  Google Scholar 

  45. G. Pacchioni and G. Ieranò (1997), Phys. Rev. B 56, 7304.

    Google Scholar 

  46. G. Pacchioni and G. Ieranò (1998), Phys. Rev. B 57, 818.

    Google Scholar 

  47. G. Pacchioni and G. Ieranò, and A. M. Marquez, (1998), Phys. Rev. Lett. 81, 377.

    Article  CAS  Google Scholar 

  48. A. C. Pineda and S. P. Karna (2000), J. Phys. Chem. A 104, 4699.

    Article  CAS  Google Scholar 

  49. D. L. Griscom and E. J. Frieble (1986), Phys. Rev. B 34, 7524.

    Article  CAS  Google Scholar 

  50. R. Tohmon, Y. Shimogaichi, Y. Tsuta, S. Munekuni, Y. Ohki, Y. Hama, and K. Nagasawa (1990), Phys. Rev. B 41, 7258.

    Article  CAS  Google Scholar 

  51. L. Zhang and R. G. Leisure (1996), J. Appl. Phys. 80, 3744.

    Article  CAS  Google Scholar 

  52. R. A. B. Devine, D. Mathiot, W. L. Warren, D. M. Fleetwood, and B. Asper (1993), Appl. Phys. Lett. 63, 2926.

    Article  CAS  Google Scholar 

  53. J. F. Conoley, Jr., P. M. Lenahan, H. L. Evans, R. K. Lowery, and T. J. Morthorst (1994), Appl. Phys. Lett. 65,2281.

    Article  Google Scholar 

  54. R. A. B. Devine, W. L. Warren, J. B. Xu, I. H. Wilson, P. Paillet, and J.-L. Leray (1995), J. Appl. Phys. 77, 175.

    Article  CAS  Google Scholar 

  55. M. E. Zvanut, T. L. Chen, R. E. Stahlbush, E. S. Steigenwalt, and G. A. Brown (1995), J. Appl. Phys. 77, 4329.

    Article  CAS  Google Scholar 

  56. K. Vanheusden and A. Stesmans (1993), J. Appl. Phys. 74,275.

    Article  CAS  Google Scholar 

  57. W. L. Warren, D. M. Fleetwwod, M. R. Shaneyfelt, J. R. Schwank, P. S. Winokur, and R. A. B. Devine (1993), Appl. Phys. Lett. 62, 3330.

    Article  CAS  Google Scholar 

  58. J. F. Conoley, Jr. and P. M. Lenahan (1995), IEEE Trans. Nucl. Sci. 42, 1740.

    Article  Google Scholar 

  59. J. R. Chavez, S. P. Kara, K. Vanheusden, C. P. Brothers, R. D. Pugh, B. K. Singaraju, and R. A. B. Devine(1997), IEEE Trans Nucl. Sci. 44, 1799.

    Article  CAS  Google Scholar 

  60. S. P. Karna, A. C. Pineda, W. M. Shedd, and B. K. Singaraju (1999), Electrochem. Soc. Procc. 99-3, 161.

    CAS  Google Scholar 

  61. W. L. Warren, P. M. Lenahan, B. Robinson, and J. H. Stathis (1988), Appl. Phys. Lett. 53, 482.

    Article  CAS  Google Scholar 

  62. M. E. Zvanut, F. J. Feigl, W. B. Fowler, J. K. Rudra, P. J. Caplan, E. H. Poindexter, and D. J. Zook (1989), Appl. Phys. Lett. 54, 2118.

    Article  CAS  Google Scholar 

  63. C. R. Helms and E. H. Poindexter (1994), Rep. Prog. Phys. 57, 791.

    Article  CAS  Google Scholar 

  64. P. J. Caplan, E. H. Poindexter, B. E. Deal, and R. R. Razouk (1979), J. Appl. Phys. 50, 5847.

    Article  CAS  Google Scholar 

  65. E. Holzenkämpfer, F.-W. Richter, J. Stuke, and U. Voget-Grote (1979), J. Non-Cryst. Solids 32, 327.

    Article  Google Scholar 

  66. I. P. Lisovskii, V. G. Litovchenko, V. B. Lozinskii, S. I. Frolov, H. Flietner, W. 63. Fussel, E. G. Schmidt (1995), J. Non-Cryst. Solids 187, 91.

    Article  CAS  Google Scholar 

  67. H. Hosono and R. A. Weeks (1989), Phys. Rev. B 40, 10543.

    Google Scholar 

  68. H. Hosono, H. Kawazoe, K. Oyoshi, and S. Tanaka (1994), J. Non-Cryst. Solids 179, 39.

    Article  CAS  Google Scholar 

  69. D. L. Griscom, E. J. Frieble, K. J. Long, and J. W. Fleming (1983), Appl. Phys. Lett. 54, 3743.

    CAS  Google Scholar 

  70. A. Stesmans and V. V. Afanas’ev (1996), Appl. Phys. Lett. 69, 2056.

    Article  CAS  Google Scholar 

  71. D. M. Fleetwood (1992), IEEE Trans. Nuc. Sci. 39, 269.

    Article  Google Scholar 

  72. D. M. Fleetwood, P. S. Winokur, L. C. Riewe, and R. A. Reber, Jr. (1998), J. Appl Phys. 84, 6141.

    Article  CAS  Google Scholar 

  73. A. Stesmans, B. Nouwren, and V. V. Afanas’ev (1998), Phys. Rev. B 58, 15801.

    Google Scholar 

  74. A. Stesmans and V. V. Afanas’ev (1999), Microelectron. Engg, 48, 113.

    Article  CAS  Google Scholar 

  75. M. Vitiello, N. Lopez, F. lllas, and G. Pacchioni (2000), J. Phys. Chem. A 104, 4674.

    Article  CAS  Google Scholar 

  76. A. H. Edwards (1995), J. Non-Cryst. Solids 187, 232.

    Article  CAS  Google Scholar 

  77. H. A. Kurtz and S. P. Karna (2000), J. Phys. Chem. A 104, 4780.

    Article  CAS  Google Scholar 

  78. J. W. Lyding, K. Hess, and I. C. Kizilyalli (1996), Appl. Phys. Lett. 68, 2526.

    Article  CAS  Google Scholar 

  79. R. A. B. Devine, J.-L. Autran, W. L. Warren, K. L. Vanheusden, and J.-C. Rostaing (1997), Appl. Phys. Lett. 70, 2999.

    Article  CAS  Google Scholar 

  80. C. G. Van deWalle and W. B. Jackson (1996), Appl. Phys. Lett. 69, 2441.

    Article  Google Scholar 

  81. K. Vanheusden, W. L. Warren, D. M. Fleetwood, J. R. Schwank, M. R. Shaneyfelt, P. S. Winokur, and Z. A. Lemnios (1997), Nature 386, 587.

    Article  CAS  Google Scholar 

  82. K. Vanheusden and A. Stesmans (1993), Microelectron. Engg. 22, 371.

    Article  CAS  Google Scholar 

  83. W. L. Warren, K. Vanheusden, J. R. Schwank, D. M. Fleetwood, P. S. Winokur, R. A.B. Devine (1996), Appl. Phys. Lett. 68, 2993.

    Article  CAS  Google Scholar 

  84. K. Vanheusden, W. L. Warren, and R. A. B. Devine (1997), J. Non-Cryst. Solids 216 116.

    Article  CAS  Google Scholar 

  85. R. E. Stahlbush, R. K. Lawrence, H. L. Hughes (1998), IEEE Trans. Nucl. Soc. 45, 2398.

    Article  CAS  Google Scholar 

  86. A. M. Ferreira, S. P. Karna, C. P. Brothers, R. D. Pugh, B. K. Singaraju, K. Vanheusden, W. Warren, and R. A. B. Devine (1997), Mat. Res. Soc. Symp. Proc. 446, 247.

    Article  CAS  Google Scholar 

  87. S. P. Karna, J. R. Chavez, R. D. Pugh, C. P. Brothers, W. M. Shedd, B. K. Singaraju, M. Vitiello, G. Pacchioni, and R. A. B. Devine (1998), IEEE Trans. Nuc. Sci. 45, 2408.

    Article  CAS  Google Scholar 

  88. K. Vanheusden, P. P. Korambath, H. A. Kurtz, S. P. Kama, D. M. Fleetwood, W. M. Shedd, and R. D. Pugh (1999), IEEE Trans. Nuc. Sci. 46, 1562.

    Article  CAS  Google Scholar 

  89. S. P. Karna, R. D. Pugh, W. M. Shedd, and B. K. Singaraju (1999), J. Non-Cryst. Solids 254, 66(1999).

    Article  CAS  Google Scholar 

  90. A. Yokozawa and Y. Miyamoto (1997), Phys. Rev. B. 55, 13783.

    Google Scholar 

  91. P. E. Blochl and J. H. Stathis (1999), Phys. Rev. Lett. 83, 372.

    Article  CAS  Google Scholar 

  92. P. E. Bunson, M. Di Ventra, S. T. Pantelides, R. D. Schriempf, and K. F. Galloway (1999), IEEE Trans. Nuc. Sci. 46, 1568.

    Article  CAS  Google Scholar 

  93. A. H. Edwards and G. Germann (1988), Nucl. Instrum. and Meth. 32, 238.

    Article  Google Scholar 

  94. K. Vanheusden, D. M. Fleetwood, M. R. Shaneyfelt, B. L. Draper, and J. R. Schwank (1998), IEEE Trans. Nuc. Sci. 45, 2391.

    Article  CAS  Google Scholar 

  95. S. P. Karna, H. A. Kurtz, R. A. B. Devine, W. M. Shedd, and R. D. Pugh (2000), IEEE Trans. Nuc. Sci. 47, 1000.

    Article  Google Scholar 

  96. H. A. Kurtz and S. P. Karna, (1999), IEEE Trans. Nuc. Sci. 46, 1574.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Karna, S., Kurtz, H.A., Pineda, A.C., Shedd, W.M., Pugh, R.D. (2000). POINT DEFECTS IN Si-SiO2 SYSTEMS: CURRENT UNDERSTANDING. In: Pacchioni, G., Skuja, L., Griscom, D.L. (eds) Defects in SiO2 and Related Dielectrics: Science and Technology. NATO Science Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0944-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0944-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6686-7

  • Online ISBN: 978-94-010-0944-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics