Skip to main content

AB-INITIO MOLECULAR DYNAMICS SIMULATION OF AMORPHOUS SILICA SURFACE

  • Chapter
Defects in SiO2 and Related Dielectrics: Science and Technology

Part of the book series: NATO Science Series ((NAII,volume 2))

  • 1406 Accesses

Abstract

During the last two decades classical molecular dynamics (MD) simulations have provided useful insight into the structural and dynamical properties of disordered forms of silica [1, 2, 3]. In these simulations the interaction between atoms is described by empirical classical potentials. Although the bulk network topology [1, 2], the vibrational spectra [3] and even the high pressure densification [4] of amorphous silica are reasonably well reproduced by empirical potentials, an explicit treatment of the electronic structure, missed in the classical studies, is mandatory to address several others important issues on the properties of silica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. V. Woodcock, C. A. Angell, and P. Cheeseman, J. Chem. Phys. 65, 1565 (1976); T. F. Soules, J. Chem. Phys. 71, 4570 (1979); S. K. Mitra, M. Amini, D. Finchham, and R. W. Hockney, Phylos. Mag. B 43, 365 (1981); Feuston and S. H. Garofalini, J. Chem. Phys. 65, 1565 (1988); B. Vessal, M. Amini, D. Finchham, and C. R. A. Catlow, Phylos. Mag. B 60, 753 (1989); J. R. Rustad, D. A. Yuen, and F. J. Spera, Phys. Rev. A 42, 2081 (1990).

    Article  CAS  Google Scholar 

  2. P. Vashista, R. K. Kalia, J. P. Rino, and I. Ebbsjo, Phys. Rev. B 41, 12197 (1990); J. P. Rino, I. Ebbsjö, R. K. Kalia, A. Nakano, and P. Vashista, ibidem, B 47, 3053 (1993); A. Nakano, R. K. Kalia, and P. Vashista, Phys. Rev. Lett. 73, 2336 (1994); T. Campbell, R. K. Kalia, A. Nakano, F. SHimojo, K. Tsuruta, P. Vashista, and S. Ogata, ibidem, 82, 4018 (1999).

    Google Scholar 

  3. S. N. Taraskin and S. R. Elliott, Phys. Rev. B 59, 8572 (1999); J. Horbach and W. Kob, ibidem, B 60, 3169 (1999); C. Oligschleger, ibidem, 3182 (1999).

    Google Scholar 

  4. J. Tse and D. Klug, Phys. Rev. B 46, 5933 (1992).

    Google Scholar 

  5. G. Pacchioni, this volume.

    Google Scholar 

  6. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  CAS  Google Scholar 

  7. R. Car and M. Parrinello, in Simple Molecular Systems at Very High Density, edited by A. Polian and P. Loubeyre (Plenum, New York, 1989), p. 455; G. Galli and M. Parrinello in Computer Simulation in Material Science, edited by M. Meyer and V. Pontikis (Kluwer, Dordrecht, 1991); G. Galli and A. Pasquarello, in Computer Simulation in Chemical Physics, edited by M. P. Allen and D. J. Tildesley (Kluwer Acad. 1993), p. 261.

    Google Scholar 

  8. M. Parrinello, Solid State Commun. 102, 107 (1997).

    Article  Google Scholar 

  9. M. C. Payne, M. P. Teter, D. C. Allan, T. A Arias and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Article  CAS  Google Scholar 

  10. A. Pasquarello, M. S. Hybertsen, and R. Car, Phys. Rev. Lett. 74, 1024 (1995); G.-M. Rignanese, A. Pasquarello, J.-C. Charlier, X. Gonze, and R. Car, ibidem, 79, 5174 (1997).

    Article  CAS  Google Scholar 

  11. J. Sarnthein, A. Pasquarello, and R. Car, Phys. Rev. Lett. 74, 4682 (1995).

    Article  CAS  Google Scholar 

  12. M. Boero, A. Pasquarello, J. Sarnthein, and R. Car, Phys. Rev. Lett. 78, 887 (1997).

    Article  CAS  Google Scholar 

  13. F. Mauri, B. Pfrommer, and S. G. Louie, Phys. Rev. Lett. 77, 5300 (1996).

    Article  CAS  Google Scholar 

  14. NMR calculations on silica within ab-initio MD are in progress. F. Mauri, private communication.

    Google Scholar 

  15. A. Pasquarello and R. Car, Phys. Rev. Lett. 79, 1766 (1997).

    Article  CAS  Google Scholar 

  16. X. Gonze, D. C. Allan, and M. P. teter, Phys. Rev. Lett. 68, 3603 (1992).

    Article  CAS  Google Scholar 

  17. J. Sarnthein, A. Pasquarello and R. Car, Science 275, 1925 (1997).

    Article  CAS  Google Scholar 

  18. A. Pasquarello and R. Car, Phys. Rev. Lett. 80, 5145 (1998).

    Article  CAS  Google Scholar 

  19. J. Sarnthein, A. Pasquarello and R. Car, Phys. Rev. B52, 12690 (1995); ibidem, B 57, 14133 (1998); A. Pasquarello, ibidem, B 61, 3951 (2000).

    Google Scholar 

  20. D. Ceresoli, M. Bernasconi, S. Iarlori, M. Parrinello, and E. Tosatti, Phys. Rev. Lett. 84, 3787 (2000).

    Article  Google Scholar 

  21. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989).

    Google Scholar 

  22. A. De Vita, M. J. Gillan, J. S. Lin, M. C. Payne, I. Stich, and L. J. Clarke, Phys. Rev. B 46, 12964 (1992).

    Google Scholar 

  23. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford 1954).

    Google Scholar 

  24. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford 1989)

    Google Scholar 

  25. P. C. Hohenberg and W. Kohn, Phys. Rev. 136 B864 (1964).

    Article  Google Scholar 

  26. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  27. S. Hammes-Schiffer and H. C. Andersen, J. Chem. Phys. 99, 523 (1993); B. Hartke and E. A. Carter, J. Chem. Phys. 97, 6569 (1992); ibidem, Chem. Phys. Lett. 189, 358 (1992); D. A. Gibson and E. A. Carter, J. Phys. Chem. 97, 13429 (1993).

    Article  CAS  Google Scholar 

  28. R. O. Jones and O. Gunnarsonn, Rev. Mod. Phys. 61, 689 (1989)

    Article  CAS  Google Scholar 

  29. J. P. Perdew et al., Phys. Rev. B 46, 6671 (1992).

    Article  CAS  Google Scholar 

  30. M. Sprik, J. Hutter and M. Parrinello, J. Chem. Phys. 105, 1142 (1996).

    Article  CAS  Google Scholar 

  31. G. B. Bachelet, D. R. Hamann and M. Schliiter, Phys. Rev. B 26, 4199 (1982).

    Article  CAS  Google Scholar 

  32. W. E. Pickett, Comput. Phys. Rep. 9, 115 (1989).

    Article  Google Scholar 

  33. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (Dover, Mineola, New York 1996).

    Google Scholar 

  34. G. Lippert, J. Hutter, and M. Parrinello, Molecular Physics 92, 477 (1997).

    CAS  Google Scholar 

  35. P. E. Blochl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  36. F. Gygi, Europhys. Lett. 19, 617 (1992); ibibem, Phys. Rev. B 48, 11692 (1993); ibidem 51, 11190 (1995); D. R. Hamann, ibidem, 9508 (1995).

    Article  CAS  Google Scholar 

  37. P. E. Blochli and J. H. Stathis, Phys. Rev. Lett. 83, 372 (1999)

    Article  Google Scholar 

  38. D. R. Hamann, Phys. Rev. Lett. 81, 3447 (1998).

    Article  CAS  Google Scholar 

  39. G. Pastore, E. Smargiassi, and F. Buda, Phys. Rev. A 44, 6334 (1991).

    Google Scholar 

  40. P. E. Blochl and M. Parrinello, Phys. Rev. B 45, 9413 (1992).

    Google Scholar 

  41. D. C. Allan and M. P. Teter, Phys. Rev. Lett. 59, 1136 (1987); N. R. Keskar and J. R. Chelikowski, Phys. Rev. B 46, 1 (1992); D. R. Hamann, Phys. Rev. Lett. 76, 660 (1996); D. M. Teter, R. Hemley, G. Kress, and J. Hafner, ibidem, 80, 2145 (1998).

    Article  CAS  Google Scholar 

  42. F. Liu, S. H. Garofalini, R. D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett. 70, 2750 (1993).

    Article  CAS  Google Scholar 

  43. R. M. Wentzcovitch, C. daSilva, J. R. Chelikoswky, and N. Binggeli, Phys. Rev. Lett. 80, 2149 (1998).

    Article  CAS  Google Scholar 

  44. The surface properties of silica, edited by A. P. Legrand (Wiley, New York, 1998).

    Google Scholar 

  45. T.A. Michalske and B. C. Bunker, J. Appl. Phys. 56, 2687 (1984); L. H. Dubois and B. R. Zegarski, J. Phys. Chem. 97, 1665 (1993); ibidem, J. Am. Chem. Soc. 115, 1190 (1993).

    Google Scholar 

  46. A. Grabbe, T. A. Michalske and W. L. Smith, J. Phys. Chem. 99, 4648 (1995).

    Article  CAS  Google Scholar 

  47. B. C. Bunker et al., Surface Science 210, 406 (1989); ibidem, 222, 95 (1989); Grabbe et al, US patent n. 5736245 (April 7, 1998).

    Article  CAS  Google Scholar 

  48. B. A. Morrow and I. A. Cody, J. Phys. Chem. 80, 1995 (1976); ibidem, 1998 (1976); ibidem, 2761 (1976).

    Article  CAS  Google Scholar 

  49. S. H. Garofalini, J. Chem. Phys. 78, 2069 (1983); B. P. Feuston and S. H. Garofalini, ibidem, 91, 564 (1989); D. M. Zirl and S. H. Garofalini, J. of Non-Crystall. Solids, 122, 111 (1990); M. I. Trioni, A. Bongiorno and L. Colombo, ibidem, 220, 164 (1997).

    Article  CAS  Google Scholar 

  50. CPMD, J. Hutter et al., MPI für Festkörperforschung and IBM Research Laboratory (1990-99).

    Google Scholar 

  51. I. S. Chuang and G. E. Maciel, J. Phys. Chem. B 101, 3052 (1997); ibidem, J. Amer. Chem. Soc. 118, 401 (1996).

    Article  CAS  Google Scholar 

  52. P. Hoffman and E. Knözinger, Surface Science 188, 181 (1987); B. A. Morrow and A. J. McFarlan, J. Phys. Chem. 96, 1395 (1992).

    Article  Google Scholar 

  53. C. J. Brinker et al., J. of Non-Cryst. Solids 82, 117 (1982).

    Article  Google Scholar 

  54. B. Humbert, J. of Non-Cryst. Solids 191, 29 (1995).

    Article  CAS  Google Scholar 

  55. C. E. Bronnimann, R. C. Ziegler, and G. E. Maciel, J. Am. Chem. Soc. 110, 2023 (1988); D. R. Kinney, I-S. Chuang, and G. E. Maciel, ibidem 115, 6786 (1993).

    Article  CAS  Google Scholar 

  56. A. F. Wright and A. J. Leadbetter, Philos. Mag. 31, 1391 (1975).

    Article  CAS  Google Scholar 

  57. A. D. Becke, Phys. Rev. A 38, 3098 (1988); C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785-789 (1988).

    Google Scholar 

  58. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Google Scholar 

  59. H. J. Monkhorst and J. D. Pack, Phys. Rev. B13, 5188 (1976).

    Google Scholar 

  60. W. H. Press, A. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, Cambridge Universiry Press (Cambridge, 1992).

    Google Scholar 

  61. K. C. Pandey, Phys. Rev. Lett. 47, 1913 (1981).

    Article  CAS  Google Scholar 

  62. G. J. Kramer et al., Phys. Rev. B 43, 5068 (1991); B. W. H. van Beest et al., Phys. Rev. Lett. 64, 1955 (1990).

    Google Scholar 

  63. R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993); R. Resta, Rev. Mod. Phys. 66, 899 (1994).

    Google Scholar 

  64. D. R. Hamann, Phys. Rev. B 55, 14784 (1997); M. O’Keefe and G. V. Gibbs, J. Chem. Phys. 83, 2514 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bernasconi, M. (2000). AB-INITIO MOLECULAR DYNAMICS SIMULATION OF AMORPHOUS SILICA SURFACE. In: Pacchioni, G., Skuja, L., Griscom, D.L. (eds) Defects in SiO2 and Related Dielectrics: Science and Technology. NATO Science Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0944-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0944-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6686-7

  • Online ISBN: 978-94-010-0944-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics