Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 2))

  • 1393 Accesses

Abstract

A brief review of electronic structure calculations of the properties of self-trapped excitons (STEs) in silica is presented. The focus has been on crystalline systems because amorphous systems, such as fused silica, pose a significant technical challenge. The tremendous growth in speed of computer processors and available memory has led to a new generation of ab initio computer codes capable of carrying out extensive calculations. The capabilities of these codes have also grown with regards to the sophistication of both basis sets, for wave function based methods, and pseudopotentials, for density functional methods. In particular, these codes have made calculations of excited states more accessible. Calculations of varying degrees of sophistication are presented including preliminary studies of STEs at surfaces and in amorphous structures. Previous ab initio calculations have been repeated with larger basis sets and more accurate calculation methods. The new results agree nicely with experimental results, thus further legitimizing the original predictions. Recent results also predict the presence of multiple STEs that may have low energy connective paths between them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trukhin, A.N. (1992) Excitons in SiO2: A Review, J. Non-Cryst. Solids 149, 32–45.

    Article  CAS  Google Scholar 

  2. Shluger, A. L. (1988) The model of a triplet self-trapped exciton in crystalline SiO2, J. Phys. C: Solid State Phys. 21, L431–L434; A. Shluger and E. Stefanovich (1990) Models of the self-trapped exciton and nearestneighbor defct pair in SiO2, 42, 9664-10032.

    Article  CAS  Google Scholar 

  3. Fisher, A. J., W. Hayes and A. M. Stoneham (1990) Structure of the Self-Trapped Exciton in Quartz, Phys. Rev. Letters, 64, 2667–2670; A. J. Fisher, W. Hayes and A. M. Stoneham, Theory of the structure of the selftrapped exciton in quartz, J. Phys.: Condens. Matter, 2, 6707-6720.

    Article  CAS  Google Scholar 

  4. Sarntehin, J., A. Pasquarello and R. Car (1995) Structural and electronic properties of liquid and amorphous SiO2L An ab initio molecular dynamics study, Phys. Rev. Letters 74, 4682–4685; M. Boero, A. Pasquarello, J. Arnthein and R. Car (1997) Structure and Hyperfine Parameter of E1 Centers in α-quartz and in Vitreous SiO2, Phys. Rev. Letters 78, 887-890.

    Article  Google Scholar 

  5. G. Kresse and J. Hafner (1993) Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558–561; G. Kresse and J. Hafner (1994) Ab initio molecular dynamics simulations of the liquid metal amorphous-semiconductor transition in germanium, Phys. Rev. B 49 14251; G. Kresse and J. Furthmüller (1996) Comput. Mat. Sci. 6, 15; G. Kresse and J. Furthmiiller (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (16) 11169-11186.

    Article  Google Scholar 

  6. J. Song, H. Jonsson and LR Corrales (2000) Self-trapped Excitons in Quartz, Nuclear Instruments and Methods in Physics Research B 166-167, 453–460.

    Article  Google Scholar 

  7. Y. Xu and W. Y. Ching, Phys. Rev. B, 44 (1991) 11048.

    Article  CAS  Google Scholar 

  8. J. R. Chelikowsky and M. Shliiter (1977), Phys. Rev. B, 15, 4020; S. T. Pantelides (1978) in: The Physics and Chemistry of SiO2 and its Interfaces, edited by S. T. Pantelides (Pergammon, New York) p. 80; R. Dovesi, C. Pisani and C. Roetti, (1987), J. Chem. Phys., 86, 6967.

    Article  CAS  Google Scholar 

  9. Sulimov, V. B., V. V. Sokolov, E. M. Dianov and B. Poulmellec (1996) Photoinduced Structural Transformation in Silica Glass: The Role of Oxygen Vacancies in the Mechanism for UV-Written Refractive Index Gratings, Phys. Stat. Sol. A 158, 155–161.

    Article  CAS  Google Scholar 

  10. VanGinhoven, R. M., Dissertation work in progress, Department of Chemistry, University of Washington, Seattle, WA.

    Google Scholar 

  11. Sim, F., C. R. A. Catlow, M. Dupuis and J. D. Watts (1991) Ab Initio self-consistent molecular orbital calculations on defects associated wth radiation damage in alpha quartz, J. Chem. Phys. 95, 4215–4224; F. Sim, C. R. A. Catlow, M. Dupuis, J. D. Watts, and E. Clementi (1987) Ab inition self-consistent filed-molecular orbital calculations including long-range coulomb effects: Alpha quartz and defects, in Supercomputer Research in Chemistry and Chemical Engineering, edited by K. F. Jensen and D. G. Truhlar, ACS Symposium Series No. 353 (American Chemical Society, Washington, D.C.)

    Article  CAS  Google Scholar 

  12. Frisch, M. J., et al., Gaussian 98, Gaussian Inc., Pittsburgh, PA, 1998.

    Google Scholar 

  13. Dupuis, M, A. Marquez, and E. R. Davidson, “HONDO 99”, 1999, based on HONDO 95.3, M. Dupuis, A. Marquez, and E. R. Davidson, Quantum Chemistry Program Exchange (QCPE), Indiana University, Bloomington, In 47405.

    Google Scholar 

  14. MOLPRO is a package of ab initio programs written by H.-J. Werner and PJ. Knowles with contributions from J. Almlöf, R.D. Amos, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, S.T. Elbert, C. Hampel, R. Lindh, A.W. Lloyd, W. Meyer, M.E. Mura, A. Nicklass, K.A. Peterson, R.M. Pitzer, P. Pulay, M. Schutz, H. Stoll, A.J. Stone, P.R. Taylor, T. Thorsteinsson.

    Google Scholar 

  15. Pacchioni, G. and Ierano, G. (1998) Ab initio theory of optical transitions of point defects in SiO2, Phys. Rev. B, 57,818–832.

    Article  CAS  Google Scholar 

  16. Song, J., L. R. Corrales, G. Kesse, and H. Jonsson (2000) Migration of O-vacancies in a-quartz: The effect of excitons and electron holes, Submitted to Phys. Rev. Lett.

    Google Scholar 

  17. Petrik, N. G., A. B. Alexandrov, T. M. Orlando and A. I. Vall (1999) Radiation-Induced Processes at Oxide Surfaces and Interfaces Relevant to Spent Nuclear Fuel Storage, Transactions of the American Nuclear Society, 81, 101–102; A.B. Alexandrov, A. Y. Bychkov, A. I. Vall, N. G. Petrik and V. M. Sedov (1991), RussionaJ. Phys. Chem., 65, 1604.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Corrales, L.R., Song, J., Vanginhoven, R.M., Jónsson, H. (2000). COMPUTATIONAL STUDIES OF SELF-TRAPPED EXCITONS IN SILICA. In: Pacchioni, G., Skuja, L., Griscom, D.L. (eds) Defects in SiO2 and Related Dielectrics: Science and Technology. NATO Science Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0944-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0944-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6686-7

  • Online ISBN: 978-94-010-0944-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics