Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 13))

Abstract

Zeolites containing cation-exchanged transition metal cations are effective catalysts for a variety of reactions. The distribution of metal cations amongst different cation-exchange sites depends on a variety of factors including, the charge on the cation, the Si/Al ratio of the zeolite, and the distribution of Al atoms in the zeolite framework. An overview is presented of recent theoretical efforts aimed at determining the distribution of charge- exchange sites in ZSM-5 as a function of Si/Al ratio and the stability of mono- and divalent cations located at specific charge-exchange sites. Stability is defined with reference to either reduction to metallic particles or demetallation to form metal oxide particles. The siting requirements and stability of binuclear cations, viz. [M-O-M]2+, are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Bekkum, H., Flanigen, E. M., and Jansen, J. C., eds. (1991) Introduction to Zeolite Science and Technology, Studies in Surf. Sci. Catal. 58, Elsevier, Amsterdam.

    Google Scholar 

  2. Barthomeuf, D. (1996) Catal. Rev.-Sci. Eng. 38, 521.

    Article  Google Scholar 

  3. Klier, K. (1988) Langmuir 4, 13.

    Article  CAS  Google Scholar 

  4. Armor, J.N. (1994) in Science and Technology in Catalysis 1994, Kondansha, Tokyo, p. 51.

    Google Scholar 

  5. Maxwell, I. E. (1982) Adv. Catal. 31, 2.

    Google Scholar 

  6. Sonnemans, M. H., den Heijer, C., and Crocker, M. (1993) J. Phys. Chem. 97, 440.

    Article  CAS  Google Scholar 

  7. Feng, X., and Hall, W. K. (1997) Catal. Lett. 46, 11.

    Article  CAS  Google Scholar 

  8. Rice, M.J., Chakraborty, A.K., and Bell, A. T. (1999) J. Catal. 186, 222.

    Article  CAS  Google Scholar 

  9. Rice, M.J., Chakraborty, A.K., and Bell, A. T. (2000) J. Catal., in press.

    Google Scholar 

  10. Nachtigallova, D., Nachtigall, P., Sierka, M., and Sauer, J. (1999) Phys. Chem. Chem. Phys. 1, 2019.

    Article  CAS  Google Scholar 

  11. Seminario, J. M., and Politzer, P., Eds. (1995) Modern Density Functional Theory: A Tool for Chemistry, Elsevier, New York.

    Google Scholar 

  12. Sauer, J., Ugliengo, P., Garrone, E., and Saunders, V. R., (1994) Chem. Rev. 94, 2095.

    Article  CAS  Google Scholar 

  13. Kramer, G.H., and van Santen, R. A., (1995) Chem. Rev. 95, 637.

    Article  Google Scholar 

  14. Nicholas, J. B. (1997) Topics in Catal. 4, 157.

    Article  CAS  Google Scholar 

  15. Rice, M.J., Chakraborty, A.K., and Bell, A. T. (1998) J. Phys. Chem. A 102, 7498.

    Article  CAS  Google Scholar 

  16. Rice, M. J., Chakraborty, A.K., and Bell, A. T. (2000) J. Phys. Chem. A, in press

    Google Scholar 

  17. Biscardi, J. A., Meitzner, G.D., and Iglesia, E. (1998) J. Catal. 179, 192.

    Article  CAS  Google Scholar 

  18. El-Malki, E.M.; van Santen, R.A.; Sachtier, W.M.H. J. Phys. Chem. B 1999 103(22) 4611.

    Google Scholar 

  19. da Cruz, R.S., Mascarenhas, A.J.S., and Andrade, H. M. C. (1998) Appl. Catal. B 4, 283.

    Google Scholar 

  20. Lobree, L. J., Hwang, I-C., Reimer, J.A., and Bell, A. T. (1999) J. Catal. 186, 242.

    Article  CAS  Google Scholar 

  21. Jentys, A., Lugstein, A., and Vinek, R (1997) Zeol. 18, 391.

    Article  CAS  Google Scholar 

  22. Voskoboinikov, T. V., Chen, H.Y., and Sachtler, W. M. H. (1998) Appl. Catal. B 19, 279.

    Article  CAS  Google Scholar 

  23. Yan, J. Y., Sachtler, W.H.M., and Kung, H. H., (1997) Catal. Today 33, 279

    Article  CAS  Google Scholar 

  24. Cañizares, P.; DeLucas, A.; Valverde, J. L.; Dorado, F. Ind. Eng Chem. Res. 1998 37(7) 2592.

    Google Scholar 

  25. Grünert, W., Hayes, N. W., Joyner, R. W., Shipro, E. S., Siddiqui, M. R. H., and Baeva, G. N., J.(1994) J. Phys. Chem. 98, 10832.

    Article  Google Scholar 

  26. Yamashita, H., Matsuoka, M., Tsuji, K., Anpo, Y., and Che, M (1996) J. Phys. Chem. 100, 397.

    Article  CAS  Google Scholar 

  27. Ali, A., Alvarez, W., Loughran, C. J., Resasco, D.E., (1997); Appl. Catal. B 14, 13.

    Google Scholar 

  28. Biscardi, J. A., and Iglesia, E. (1996) Catal. Today 31, 207.

    Article  CAS  Google Scholar 

  29. Hass, K.C., and Schneider, W. F. (1999) Phys. Chem. Chem. Phys. 1, 639.

    Article  CAS  Google Scholar 

  30. Li, Y.; Armor, J. N. (1992) Appl. Catal. B 1, L21.

    Article  CAS  Google Scholar 

  31. Li, Y.; Armor, J. N. (1997) Appl. Catal. B 3, 275.

    Google Scholar 

  32. Li, Y. J., Battavio, P.J., and Armor, J. N. (1993) J. Catal. 142, 561.

    Article  CAS  Google Scholar 

  33. Lee, J. K., Lee, H.T., and Rhee, H. K. (1996) React Kinet. Catal. Lett. 57, 323.

    Article  CAS  Google Scholar 

  34. Hamada, H., Matsubayashi, N., Shimada, H., Kintaichi, Y., Ito, T., and Nishijima, A. (1990) Catal. Lett. 5, 189.

    Article  CAS  Google Scholar 

  35. Iwamoto, M., Yahiro, H., Tanada, K., Mizuno, N., Mine, Y., and Kagawa, S.(1991) J. Phys. Chem. 95, 3727.

    Article  CAS  Google Scholar 

  36. Sarkany, J., d’Itri, J.L., and Sachtler, W. H. M., (1992) Catal. Lett. 16, 241.

    Article  CAS  Google Scholar 

  37. Campa, M. C., Indovina, V., Minelli, G., Pettiti, I., and Riccio, A., (1994) Catal. Lett. 23, 141.

    Article  CAS  Google Scholar 

  38. Moretti, G. (1994) Catal. Lett. 23, 135.

    Article  CAS  Google Scholar 

  39. Moretti, G. (1994) Catal. Lett. 28, 143.

    Article  CAS  Google Scholar 

  40. Joyner, R.W., and Stockenhuber, M. (1997) Catal. Lett. 45, 15.

    Article  CAS  Google Scholar 

  41. Zhang, Z., Lerner, B., Lei, G.-D., and Sachtler, W. M. H. (1996) J. Catal. 161, 43.

    Article  Google Scholar 

  42. Yan, J. Y., Lei, G.-D., Sachtler, W.H.M., and Kung, H. H. (1996) J. Catal. 161, 43.

    Article  CAS  Google Scholar 

  43. Kuroda, Y., Kumashiro, R., Yoshimoto, T., Nagao, M., (1999) Phys. Chem. Chem. Phys. 1, 649.

    Article  CAS  Google Scholar 

  44. Marturano, P., Drozdová, L., Kogelbauer, A., and Prins, R., (2000) J. Catal. 192, 236.

    Article  CAS  Google Scholar 

  45. Goodman, B. R., Schneider, W. F., Hass, K.C., and Adams, J. B. (1998) Catal. Lett. 56, 183.

    Article  CAS  Google Scholar 

  46. Goodman, B. R., Hass, K. C., Schneider, W.F., and Adams, J. B. (1999) J. Phys. Chem. B. 103, 10452.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bell, A.T. (2001). Siting and Stability of Metal Cations in Zeolites. In: Centi, G., Wichterlová, B., Bell, A.T. (eds) Catalysis by Unique Metal Ion Structures in Solid Matrices. NATO Science Series, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0782-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0782-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6875-5

  • Online ISBN: 978-94-010-0782-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics