Skip to main content

Catalysis Using Guest Single and Mixed Oxides in Host Zeolite Matrices

  • Chapter
Catalysis by Unique Metal Ion Structures in Solid Matrices

Part of the book series: NATO Science Series ((NAII,volume 13))

Abstract

Guest single and mixed oxides in a host zeolite matrix represent a new type of catalytic materials with interesting reactivity properties for the possibility to (i) stabilize (mixed) oxide nanoparticles with unusual catalytic properties, (ii) combine sorption characteristics of the microporous material with the reactivity characteristics of the oxide, (iii) have synergetic interactions between isolated and multinuclear metal-oxide species and (iv) induce changes in the reactivity at the metal oxide due to the confinement of reactants/products in the zeolite cavities. These aspects are discussed with reference to Cu-, Fe-, V- and Mocontaining micro- and mesoporous materials in order to evidence prospects, but also limitations for the application of this new class of catalytic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arends I.W.C.E., Pellizon Birelli, M. and Sheldon R.A. (1997). Catalytic oxidations with biomimetic vanadium systems, Studies Surface Science and Catal., 110, 1031–1040.

    Article  CAS  Google Scholar 

  2. Knops-Gerrits P.P., L’Abbé M., van Bavel A.-M., Langouche G., Bruyseraede I. and Jacobs, P.A. (1996). Alkane partial oxidation with iron N,N’-bis(2-pyridinecarboxamide) complexes encaged in zeolite Y, Studies Surface Science and Catal., 101, 811–820.

    Article  CAS  Google Scholar 

  3. De Vos D.E., Meinershagen J. and Bein T. (1996). Zeolite-confined Mn complexes of cyclic amines: new selective catalysts for hydrocarbon oxidation, Studies Surface Science and Catal., 101, 1303–1312.

    Article  Google Scholar 

  4. Sachtler W.M.H. and Zhang Z. (1993). Zeolite-supported transition metal catalysts. Adv. Catal., 39, 129–220.

    Article  CAS  Google Scholar 

  5. Mériaudeau P. and Naccache C. (1997). Dehydrocyclization of alkanes over zeolite-supported metal catalysts: monofunctional or bifunctional route, Catal. Rev.-Sci. Eng., 39, 5–48.

    Article  Google Scholar 

  6. Centi, G. and Misono M. (1998). New possibilities and opportunities for basic and applied research on selective oxidation by solid catalysts. An overview, Catal. Today, 41, 287–296.

    Article  CAS  Google Scholar 

  7. Moser W.R.-Editor (1996). Advanced Catalysts and Nanostructured Materials — Modem Synthetic Methods, Academic Press, San Diego CA.

    Google Scholar 

  8. Centi, G., Fazzini, F., Fierro, J.L.G., Lopez Granados, M., Sanz, R., and Serrano D. (1998). Influence of the preparation methodology on the reactivity and characteristics of Fe-Mo-oxide nanocrystals stabilized inside pentasyl-type zeolites. Studies in Surface Science and Catal., 118, 577–591.

    Article  CAS  Google Scholar 

  9. Wichterlova, B., Dedecek J. and Sobalik Z. (1999). Redox catalysis over molecular sieves. Structure and function of active sites. Proceedings 12th International Zeolite Conference, Treacy M.M.J., Marcus B.K., Bisher M.E. and Higgins J.B. Editors, Materials Research Society Pub.: Warrendale (PE), pp. 941–973.

    Google Scholar 

  10. Voskoboinikov T.V., Chen H.-Y. and Sachtier W.M.H. (1998). On the nature of active sites in Fe/ZSM-5 catalysts for NOx abatement. Appl. Catal. B: Env., 19, 279–287.

    Article  CAS  Google Scholar 

  11. Joyner R. and Stockenhuber M. (1999). Preparation, characterization and performance of Fe-ZSM-5 catalysts. J. Phys. Chem. B, 103, 5963–5976.

    Article  CAS  Google Scholar 

  12. Marturano P., Drozdova, L., Kogelbauer A. and Prins R. (2000). Fe/ZSM-5 prepared by sublimation of FeCl3: the structure of the Fe species as determined by IR, 27A1-MAS-NMR and EXAFS spectroscopy, J. Catal., 192, 236–247.

    Article  CAS  Google Scholar 

  13. Centi, G., Fazzini, F. and Galli, A. (1998). Oxide nanoparticles within a host microporous matrix: polynuclear copper species in Cu-ZSM-5 and their role in the reduction of NO. Res. Chem. Intermed., 24, 541–550.

    Article  CAS  Google Scholar 

  14. Centi, G. and Perathoner S. (1995). Nature of active species in copper-based catalysts and their chemistry of transformation of nitrogen oxides, Appl. Catal. A, 132, 179–259.

    Article  CAS  Google Scholar 

  15. Armor, J.N. (1998). Metal-exchanged zeolites as catalysts. Microporous and Mesoporous Materials, 22, 451–456.

    Article  CAS  Google Scholar 

  16. Pârvulescu, V.I., Grange P. and Delmon B. (1998).Catalytic removal of NO. Catalysis Today, 46, 233–316.

    Article  Google Scholar 

  17. Wichterlová, B., Sobalík Z. and Ddeek J. (1997). Cu ion siting in high silica zeolites. Spectroscopy and redox properties. Catalysis Today, 38, 199–203.

    Article  Google Scholar 

  18. Traa, Y. Burger B. and Weitkamp J. (1999). Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons. Microporous and Mesoporous Materials, 30, 3–41.

    Article  CAS  Google Scholar 

  19. Yokomichi, Y., Yamabe, T., Kakumoto, T. Okada, O., Ishikawa, H., Nakamura, Y., Kimura H. and Yasuda I. (2000). Theoretical and experimental study on metal-loaded zeolite catalysts for direct NOx decomposition, Applied Catalysis B: Environmental, 28, 1–12.

    Article  CAS  Google Scholar 

  20. Park, S.-K., Kurshev, V., Luan, Z., Wee Lee C. and Kevan L. (2000). Reaction of NO with copper ions in Cu(II)-exchanged ZSM-5 zeolite: electron spin resonance, electron spin echo modulation and Fourier transform infrared spectroscopy, Microporous and Mesoporous Materials, 38, 255–266.

    Article  CAS  Google Scholar 

  21. Gervasini, A., Picciau C. and Auroux A. (2000). Characterization of copper-exchanged ZSM-5 and ETS-10 catalysts with low and high degrees of exchange, Microporous and Mesoporous Materials, 35-36, 457–469.

    Article  CAS  Google Scholar 

  22. Ganemi, B., Björnbom, E., Demirel B. and Paul J. (2000). Zeolite Cu-ZSM-5: material characteristics and NO decomposition, Microporous and Mesoporous Materials, 38, 287–300.

    Article  CAS  Google Scholar 

  23. Nunes Amorim de Carvalho, M.C., Barboza Passos F. and Schmal M. (2000). The behavior of Cu/ZSM-5 in the oxide and reduced form in the presence of NO and methanol, Appl. Catal. A: General 193, 265–276.

    Article  Google Scholar 

  24. Gomez, S.A., Campero, A., Martínez-Hernández A. and Fuentes G.A. (2000). Changes in Cu2+ environment upon wet deactivation of Cu-ZSM-5 deNOx catalysts. Appl. Catal. A: General, 197, 157–164.

    Article  CAS  Google Scholar 

  25. Moretti, G., Dossi, C., Fusi, A., Recchia S. and Psaro R. (1999). A comparison between Cu-ZSM-5, Cu-S-1 and Cu-mesoporous-silica-alumina as catalysts for NO decomposition, Appl. Catal. B: Env., 20, 67–73.

    Article  CAS  Google Scholar 

  26. Bordiga, S., Turnes Palomino G., Arduino, D., Lamberti, C., Zecchina A. and Otero Areán C. (1999). Well defined carbonyl complexes in Ag+-and Cu+-exchanged ZSM-5 zeolite: a comparison with homogeneous counterparts, J. Molec. Catal. A: Chemical, 146, 97–106.

    Article  CAS  Google Scholar 

  27. Valyon J. and Hall W.K. (1993). Studies of the surface species formed from nitric oxide on copper zeolites, J. Phys. Chem., 97, 1204–1212.

    Article  CAS  Google Scholar 

  28. Li Y. and Hall, W.K. (1990). Stoichiometric catalytic decomposition of nitric oxide over copper-exchanged zeolite (CuZSM-5) catalysts. J. Phys. Chem., 94, 6145–6148.

    Article  CAS  Google Scholar 

  29. Iwamoto, M., Yahiro, H., Mizuno, N., Zhang, W.X., Mine, Y., Yoshihiro H., Furukawa H. and Kagawa S. (1992). Removal of nitrogen monoxide through a novel catalytic process. 2. Infrared study on surface reaction of nitrogen monoxide adsorbed on copper ionexchanged ZSM-5 zeolites. J. Phys. Chem., 96, 9360–9366.

    Article  CAS  Google Scholar 

  30. Sachtler W.M.H. (1996). Redox Chemistry of Cu/ZSM-5, J. Phys. Chem., 100, 845–851.

    Article  Google Scholar 

  31. Adams J.B. (1999). Cluster Model Studies of Oxygen-Bridged Cu Pairs in Cu-ZSM-5 Catalysts, J. Phys. Chem. B, 103, 10452–10460.

    Article  Google Scholar 

  32. Delahay, G., Kieger, S., Neveu, B. and Coq, B. (1999). Selective catalytic reduction of NO by NH3 in the presence of oxygen over copper-exchanged NaY zeolites. J. Chim. Phys. Phys.-Chim. Biol., 96, 443–454.

    Article  CAS  Google Scholar 

  33. Anpo, M., Matsuoka, M., Hanou, K., Mishima, H., Yamashita, H. and Patterson H.H. (1998). The relationship between the local structure of copper (I) ions on Cu+ zeolite catalysts and their photocatalytic reactivities for the decomposition of NOX into N2 and O2 at 275K. Coord. Chem. Rev., 171, 175–184.

    Article  CAS  Google Scholar 

  34. Centi, G. and Galli A. (1999). Mono and polynuclear Cu species in ZSM-5. Nature and reactivity in the reduction of NO in the presence of various reductants. In Proceedings 12th International Zeolite Conference, (Baltimore, June 1998), M.M.J. Treacy, B.K. Marcus, M.E. Bisher, J.B. Higgins Eds., Material Research Society Pub.: Warrendale PA Pub: 1999, Vol. II, p. 1359–1366.

    Google Scholar 

  35. Centi, G., Nigro, C., Perathoner S. and Stella G. (1994). Reactivity of Cu-based Zeolites and Oxides in the Anaerobic and Aerobic Conversion of NO. In Environmental Catalysis, J. Armor eds., ACS Symp. Series nr. 552, ACS Pub: 1994, Ch. 3, p. 22–38.

    Google Scholar 

  36. Schoonheydt R.A. (1993). Transition metal ions in zeolites: siting and energetics of Cu2+. Catal. Rev.-Sci. Eng., 35, 129–168.

    Article  CAS  Google Scholar 

  37. Biglino, D., Li, H., Erickson, R., Lund, A., Anders Y. and Shiotani M. (1999). EPR and ENDOR studies of NOX and Cu2+ in zeolites: bonding and diffusion. Phys. Chem. Chem. Phys., 1, 2887–2896.

    Article  CAS  Google Scholar 

  38. Galli A. (1998). Catalytic conversion of NO over Cu/ZSM-5. PhD Thesis, Univ. Bologna (Italy).

    Google Scholar 

  39. Centi G. and Vazzana F. (1999). Selective catalytic reduction of N2O in industrial emissions containing O2, H2O and SO2: behavior of Fe/ZSM-5 catalysts. Catal. Today, 53, 683–693.

    Article  CAS  Google Scholar 

  40. Centi, G., Grasso, G., Vazzana F. and Arena F. (2000). SO2 resistant Fe/ZSM-5 catalysts for the conversion of nitrogen oxides. Studies in Surface Science and Catal., 130, 635–640.

    Article  Google Scholar 

  41. Centi, G., Perathoner S. and Vazzana F. (1999). Control of non-CO2 greenhouse gas emissions by catalytic treatments, CHEMTECH, 29(12), 48–55.

    CAS  Google Scholar 

  42. Kullavanijaya, E., Trimm D.L. and Cant N.W. (2000). Adsocat: Adsorption/catalytic combustion for VOC and odour control. Studies in Surface Science and Catal., 130, 569–574.

    Article  Google Scholar 

  43. Chintawar P.S. and Greene H.L. (1997). Adsorption and catalytic destruction of trichloroethylene in hydrophobic zeolites. Appl. Catal. B: Env., 14, 37–47.

    Article  CAS  Google Scholar 

  44. Chen H.-Y. and Sachtier W.M.H. (1998). Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water. Catal. Today, 42, 73–83.

    Article  CAS  Google Scholar 

  45. Centi, G., Gotti, M., Perathoner S. and Pinna F. (2000). Rinse water purification using solid regenerable catalytic adsorbents Catal. Today, 55, 51–60.

    Article  CAS  Google Scholar 

  46. Centi, G., Generali P. and Dall’Olio L. (2000). Removal of N2O from industrial gaseous streams by selective adsorption over metal-exchangde zeolites. Ind. Eng. Chem. Research, 39, 131–137.

    Article  CAS  Google Scholar 

  47. Bellussi, G., Centi, G., Perathoner S. and Trifirò F. (1992). Nature of Vanadium Species in V-containing Silicalite and Their Behavior in Oxidative Dehydrogenation of Propane. In Selective Oxidation Catalysts, ACS Symposium Series, T. Oyama and J. Hightower Eds., American Chemical Society Pub: Washington 1992, Ch. 21, p. 281–297.

    Google Scholar 

  48. Centi G. and Trifirò F. (1996).Catalytic behavior of V-containing zeolites in the transformation of propane in the presence of oxygen. Appl. Catal. A, 143, 3–16.

    Article  CAS  Google Scholar 

  49. Centi, G., Perathoner, S., Trifirò, F., Aboukais, A., Aïssi C.F. and Guelton M. (1992). Physico-Chemical Characterization of V-Silicalite. J. Phys. Chem., 96, 2617–2629.

    Article  CAS  Google Scholar 

  50. Centi, G., Fazzini, F., Canesson L. and Tuel A. (1997). Toluene gas phase oxidation to benzaldehyde and phenol over V-containing micro-and mesoporous materials. Studies in Surface Science and Catal., 110, 893–902.

    Article  CAS  Google Scholar 

  51. Yoo J.S. (1998). Selective gas-phase oxidation at oxide nanoparticles on microporous materials, Catal. Today, 41, 409–432.

    Article  CAS  Google Scholar 

  52. Yoo, J.S., Choi-Feng C. and Zajac G.W. (1999). Gas-phase oxygen oxidation of alkylaromatics over CVD Fe/Mo/DBH: VIII. Alteration of the oxidation mechanism of xylenes by Ag-doping, Appl. Catal. A: General, 184, 11–24.

    Article  CAS  Google Scholar 

  53. Centi, G., Fazzini, F., Fierro, J.L.G., Lopez Granados, M., Sanz R. and Serrano D. (1998). Influence of the preparation methodology on the reactivity and characteristics of Fe-Mo-oxide nanocrystals stabilized inside pentasyl-type zeolites. Studies in Surface Science and Catal., 118, 577–591.

    Article  CAS  Google Scholar 

  54. Centi, G., Perathoner S. and Tonini S. (2000). Synthesis of 3-fluorobenzaldehyde by gas-phase selective oxidation on Fe-Mo oxide/boralite catalysts. Topics in Catalysis, 11/12, 195–204.

    Google Scholar 

  55. G. Centi, S. Perathoner and S. Tonini (2000). In situ DRIFT study of the reactivity and reaction mechanism of catalysts based on iron-molybdenum oxides encapsulated in Boralite for the selective oxidation of alkylaromatics. Catal. Today, 61, 211–221.

    Article  CAS  Google Scholar 

  56. Centi G. and Perathoner S. (2000). Site isolation in iron-molybdate based catalysts for side chain oxidation of alkylaromatics. Topics in Catalysis, submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Centi, G., Perathoner, S., Vazzana, F. (2001). Catalysis Using Guest Single and Mixed Oxides in Host Zeolite Matrices. In: Centi, G., Wichterlová, B., Bell, A.T. (eds) Catalysis by Unique Metal Ion Structures in Solid Matrices. NATO Science Series, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0782-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0782-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6875-5

  • Online ISBN: 978-94-010-0782-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics