Skip to main content

Visinin-Like Proteins (VILIPs) — Emerging Role in Cross-Talk between Cellular Signaling Pathways

  • Chapter
Calcium: The Molecular Basis of Calcium Action in Biology and Medicine

Abstract

For the interaction of calcium with calcium-binding proteins, which is a prerequisite for the translation of calcium signals into physiological answers, different calcium-binding motifs and thus different families of intracellular calcium-binding proteins have evolved. These families include the C2 domain-containing proteins, the annexins and the EF-hand calcium-binding proteins (Heizmann and Hunziker, 1991). The latter group constitutes a superfamily of proteins with more than 300 members. Within this superfamily, a major discrimination has been made between calcium-buffering and calcium-sensing proteins (Ikura, 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames J.B., Tanaka, T., Stryer, L. and Ikura, M., 1996, Portrait of a myristoyl switch protein, Curr. Opin. Struct. Biol. 6, 432–438.

    Article  PubMed  CAS  Google Scholar 

  • Ames, J.B., Ishima, R., Tanaka, T., Gordon, J.I., Stryer, L. and Ikura, M., 1997 Molecular mechanics of calcium-myristoyl switches, Nature 389, 198–202.

    Article  PubMed  CAS  Google Scholar 

  • Anholt, R.R., 1993, Molecular neurobiology of olfaction, Crit. Rev. Neurobiol. 7, 1–22.

    PubMed  CAS  Google Scholar 

  • Bastianelli, E., Polans, A.S., Hidaka, H. and Pochet, R., 1995a, Differential distribution of six calcium-binding proteins in the rat olfactory epithelium during postnatal development and adulthood, J. Comp. Neurol. 354, 395–409

    Article  PubMed  CAS  Google Scholar 

  • Bastianelli, E., Takamatsu, K., Okazaki, K., Hidaka, H. and Pochet, R., 1995b, Hippocalcin in rat retina. Comparison with calbindin-D28k, calretinin and neurocalcin, Exp. Eye Res. 60, 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, H.-G., Baumann, B., Danos, P., Diekmann, S., Bogerts, B., Gundelfinger, E.D. and Braunewell, K.-H., 1999, Regional and cellular distribution of neural visinin-like protein immunoreactivities (VILIP-1 and VILIP-3) in human brain, J. Neurocytoi, in press.

    Google Scholar 

  • Boekhoff, I., Braunewell, K.-H., Andreini, I., Breer, H. and Gundelfinger, E.D., 1997, The calcium-binding protein VILIP in olfactory neurons: Regulation of second messenger signaling, Eur. J. Cell Biol. 72, 151–158.

    PubMed  CAS  Google Scholar 

  • Braunewell, K.-H. and Gundelfinger, E.D., 1997, Low level expression of calcium-sensor protein VILIP induces cAMP-dependent differentiation in rat C6 glioma cells, Neurosci. Lett. 234, 139–142.

    Article  PubMed  CAS  Google Scholar 

  • Braunewell, K.-H. and Gundelfinger, E.D., 1999, Intracellular neuronal calcium sensor (NCS) proteins — A family of EF-hand calcium-binding proteins in search for function, Cell Tissue Res. 299, 1–12.

    Article  Google Scholar 

  • Braunewell, K.-H., Spilker, C., Behnisch, T. and Gundelfinger, E.D., 1997, The neuronal calcium-sensor protein VILIP modulates cyclic AMP accumulation in stably transfected C6 glioma cells: Amino-terminal myristoylation determines functional activity, J. Neurochem. 68, 2129–2139.

    Article  PubMed  CAS  Google Scholar 

  • Braunewell, K.-H., Riederer, P., Spilker, C., Gundelfinger, E.D., Bogerts, B. and Bernstein, H.-G., 2000, Abnormal localization of two neuronal calcium sensor proteins, Visinin-Like Proteins (VILIPs)-l and-3, in neocortical brain areas of Alzheimer Disease patients, Dementia, in press.

    Google Scholar 

  • Buxbaum, J.D., Choi, E.K., Luo, Y., Lilliehook, C., Crowley, A.C., Merriam, D.E. and Wasco, W., 1998, Calsenilin: A calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment, Nat. Med. 4,1177–1181.

    Article  PubMed  CAS  Google Scholar 

  • Carrion, A.M., Link, W.A., Ledo, F., Mellstrom, B. and Naranjo, J.R., 1999, DREAM is a Ca2+-regulated transcriptional repressor, Nature 398, 80–84.

    Article  PubMed  CAS  Google Scholar 

  • Cox, J.A., Durussel, L, Comte, M., Nef, S., Nef, P., Lenz, S.E. and Gundelfinger, E.D., 1994, Neuron-specific calcium-binding proteins, J. Biol. Chem. 269, 32807–32813.

    PubMed  CAS  Google Scholar 

  • De Castro, E., Nef, S., Fiumelli, H., Lenz, S.E., Kawamura, S. and Nef, P., 1995, Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors, Biochem. Biophys. Res. Commun. 216, 133–140.

    Article  PubMed  Google Scholar 

  • De Raad, S., Comte, M., Nef, P., Lenz, S.E., Gundelfinger, E.D. and Cox, J.A., 1995, Distribution pattern of three neural calcium-binding proteins (NCS-1, VILIP and recoverin) in chicken, bovine and rat retina, Histochem. J. 27, 524–535.

    PubMed  Google Scholar 

  • Flaherty, K.M., Zozulya, S., Stryer, L. and McKay, D.B., 1993, Three-dimensional structure of recoverin, a calcium-sensor in vision, Cell 75, 709–716.

    Article  PubMed  CAS  Google Scholar 

  • Friedel, R.H., Schnurch, H., Stubbusch, J. and Barde, Y.A., 1997, Identification of genes differentially expressed by nerve growth factor-and neurotrophin-3-dependent sensory neurons, Proc. Natl. Acad. Sei. USA 94, 12670–12675.

    Article  CAS  Google Scholar 

  • Grant, A.L., Jones, A., Thomas, K.L. and Wisden, W., 1996, Characterization of the rat hippocalcin gene: The 5’ flanking region directs expression to the hippocampus, Neuroscience 75, 1099–1115.

    Article  PubMed  CAS  Google Scholar 

  • Heizmann, C.W. and Hunziker, W., 1991, Intracellular calcium-binding proteins, more sites than insights, Trends Biochem. 16, 98–103.

    Article  CAS  Google Scholar 

  • Iacopino, A.M. and Christakos, S., 1990, Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases, Proc. Natl. Acad. Sei. USA 87, 4078–4082.

    Article  CAS  Google Scholar 

  • Iacovelli, L., Sallese, M., Mariggio, S. and de Blasi, A., 1999, Regulation of G-protein-coupled receptor kinase subtypes by calcium sensor proteins, FASEB J. 13, 1–8.

    PubMed  CAS  Google Scholar 

  • Ikura, M., 1996, Calcium binding and conformational response in EF-hand proteins, Trends Biochem. 21, 14–17.

    CAS  Google Scholar 

  • Kajimoto, Y., Shirai, Y., Mukai, H., Kuno, T. and Tanaka, C., 1993, Molecular cloning of two additional members of the neural visinin-like Ca(2+)-binding protein gene family, J. Neurochem. 61, 1091–1096.

    Article  PubMed  CAS  Google Scholar 

  • Kato, M., Watanabe, Y., Iino, S., Takaoka, Y., Kobayashi, S., Haga, T. and Hidaka, H., 1998, Cloning and expression of a cDNA encoding a new neurocalcin isoform (neurocalcin alpha) from bovine brain, Biochem. J. 331, 871–876.

    PubMed  CAS  Google Scholar 

  • Kobayashi, M., Takamatsu, K., Saitoh, S. and Nogushi, T., 1993, Myristoylation of hippocalcin is linked to its membrane association properties, J. Biol. Chem. 268, 18898–18904.

    PubMed  CAS  Google Scholar 

  • Kraut, N., Frampton, J. and Graf, T., 1995, Rem-1, a putative direct target gene of the Myb-Ets fusion oncoprotein in haematopoietic progenitors, is a member of the recoverin family, Oncogene 10, 1027–1036.

    PubMed  CAS  Google Scholar 

  • Kumar, V.D., Vijay-Kumar, S., Krishnan, A., Duda, T. and Sharma, R.K., 1999, A second calcium regulator of rod outer segment membrane guanylate cyclase, ROS-GC1: Neurocalcin, Biochemistry 38, 12614–12620.

    Article  PubMed  CAS  Google Scholar 

  • Ladant, D., 1995, Calcium and membrane binding properties of bovine neurocalcin delta expressed in Escherichia coli, J. Biol. Chem. 270, 3179–3185.

    PubMed  CAS  Google Scholar 

  • Lenz, S.E., Henschel, Y., Zopf, D., Voss, B. and Gundelfinger, E.D., 1992, VILIP, a cognate protein of the retinal calcium binding proteins visinin and recoverin, is expressed in the developing chicken brain, Brain Res. Mol. Brain Res. 15, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Lenz, S.E., Jiang, S., Braun, K. and Gundelfinger, E.D., 1996a, Localization of the neural calcium-binding protein VILIP (visinin-like protein) in neurons of the chick visual system and cerebellum, Cell Tissue Res. 283, 413–424.

    Article  PubMed  CAS  Google Scholar 

  • Lenz, S.E., Zuschratter, W. and Gundelfinger, E.D., 1996b, Distribution of visinin-like protein (VILIP) immunoreactivity in the hippocampus of the Mongolian gerbil (Meriones unguiculatus), Neurosci. Lett. 206, 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Lenz, S.E., Braunewell, K.-H., Weise, C., Nedlina-Chittka, A. and Gundelfinger, E.D., 1996c, The neuronal EF-hand Ca(2+)-binding protein VILIP: Interaction with cell membrane and actin-based cytoskeleton, Biochem. Biophys. Res. Commun. 225, 1078–1083.

    Article  PubMed  CAS  Google Scholar 

  • Manahan-Vaughan, D. and Braunewell, K.-H., 1999, Metabotropic glutamate receptor activation regulates expression of the neuronal calcium-sensor protein VILIP-1 in the hippocampus of freely moving rats: Implication in long-term potentation, Neuropharmacology 396, A27.

    Google Scholar 

  • Martinez-Guijarro, F.J., Brinon, J.G., Blasco-Ibanez, J.M., Okazaki, K., Hidaka, H. and Alonso, J.R., 1998, Neurocalcin-immunoreactive cells in the rat hippocampus are GABAergic interneurons, Hippocampus 8, 2–23.

    Article  PubMed  CAS  Google Scholar 

  • Mathisen, p.M., Johnson, J.M., Kawczak, J.A. and Tuohy, V.K., 1999, Visinin-like protein (VILIP) is a neuron-specific calcium-dependent double-stranded RNA-binding protein, J. Biol Chem. 274, 31571–31576.

    Article  PubMed  CAS  Google Scholar 

  • McFerran, B.W., Weiss, J.L. and Burgoyne, R.D., 1999, Neuronal Ca(2+) sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca(2+)-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca(2+) signal transduction, J. Biol Chem. 274, 30258–30265.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, S. and Aderem, A., 1995, The myristoyl-electrostatic switch: A modulator of reversible protein-membrane interactions, Trends Biochem. 20, 272–276.

    Article  CAS  Google Scholar 

  • Moon, C, Jaberi, P., Otto-Bruc, A., Baehr, W., Palczewski, K. and Ronnett, G.V., 1998. Calcium-sensitive particulate guanylyl cyclase as a modulator of cAMP in olfactory receptor neurons, J. Neurosci. 18, 3195–3205.

    PubMed  CAS  Google Scholar 

  • Nagata, K., Puis, A., Futter, C., Aspenstrom, P., Schaefer, E., Nakata, T., Hirokawa, N. and Hall, A., 1998, The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3, EMBO J. 17, 149–158.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, A., Terasawa, M., Watanabe, M., Usuda, N., Morita, T. and Hidaka, H., 1992, Neurocalcin, a novel calcium binding protein with three EF-hand domains, expressed in retinal amacrine cells and ganglion cells, Biochem. Biophys. Res. Commun. 186, 1207–1211.

    Article  PubMed  CAS  Google Scholar 

  • Nef, P., 1996, Neuron-specific calcium sensors (the NCS subfamily), in Guidebook to the Calcium-Binding Proteins, M.R. Celio (ed.), Oxford University Press, New York, pp. 94–98.

    Google Scholar 

  • Okazaki, K., Iino, S., Inoue, S., Kobayashi, S. and Hidaka, H., 1994, Differential distribution of neurocalcin isoforms in rat spinal cord, dorsal root ganglia and muscle spindle, Biochim. Biophys. Acta 1223, 311–317.

    Article  PubMed  CAS  Google Scholar 

  • Olshevskaya, E.V., Hughes, R.E., Hurley, J.B. and Dizhoor, A.M., 1997, Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase, J. Biol. Chem. 272, 14327–14333.

    Article  PubMed  CAS  Google Scholar 

  • Olshevskaya, E.V., Ermilov, A.N. and Dizhoor, A.M., 1999, Dimerization of guanylyl cyclase-activating protein and a mechanism of photoreceptor guanylyl cyclase activation, J. Biol. Chem. 274, 25583–25587.

    Article  PubMed  CAS  Google Scholar 

  • Polans, A., Baehr, W. and Palczewski, K., 1996, Turned on by Ca2+! The physiology and pathology of Ca(2+)-binding proteins in the retina, Trends Neurosci. 19, 547–554.

    Article  PubMed  CAS  Google Scholar 

  • Pongs, O., Lindemeier, J., Zhu, X.R., Theil, T., Engelkamp, D., Krah-Jentgens, I., Lambrecht, H.-G., Koch, K.-W, Schwerner, J., Rivosecchi, R., Mallart, A., Galceran, J., Canal, I., Barbas, J.A. and Ferrus, A., 1993, Frequenin — A novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system, Neuron 11, 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Rudnicka-Nawrot, M., Surgucheva, I., Hulmes, J.D., Haeseleer, F., Sokal, I., Crabb, J.W., Baehr, W. and Palczewski, K., 1998, Changes in biological activity and folding of guanylate cyclase-activating protein 1 as a function of calcium, Biochemistry 37, 248–257.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, S., Takamatsu, K., Kobayashi, M. and Noguchi, T., 1994, Expression of hippocalcin in the developing rat brain, Brain Res. Dev. Brain Res. 80, 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, S., Kobayashi, M., Kuroki, T., Noguchi, T. and Takamatsu, K., 1995, The development of neural visinin-like Ca(2+)-binding protein 2 immunoreactivity in the rat neocortex and hippocampus, Neurosci Res. 23, 383–388.

    Article  PubMed  CAS  Google Scholar 

  • Schaad, N.C., De Castro, E., Nef, S., Hegi, S., Hinrichsen, R., Martone, M.E., Ellisman, M.H., Sikkink, R., Rusnak, F., Sygush, J. and Nef, P., 1996, Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1. Proc. Natl Acad. Sei., USA 93, 9253–9258.

    Article  CAS  Google Scholar 

  • Shimohama, S., Chachin, M., Taniguchi, T., Hidaka, H. and Kimura, J., 1996, Changes of neurocalcin, a calcium-binding protein, in the brain of patients with Alzheimer’s disease, Brain Res. 716, 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Spilker, C., Gundelfinger, E.D. and Braunewell, K.-H., 1997, Calcium-and myristoyl-dependent subcellular localization of the neuronal calcium-binding protein VILIP in transfected PC12 cells, Neurosci. Lett. 225, 126–128.

    Article  PubMed  CAS  Google Scholar 

  • Spilker, C., Richter, K., Smalla, K.-H., Manahan-Vaughan, D., Gundelfinger, E.D. and Braunewell, K.-H., 2000, The neuronal EF-hand calcium-binding protein VILIP-3 is expressed in cerebellar Purkinje cells and shows a calcium-dependent membrane association, Neurosci. 96, 121–129.

    Article  CAS  Google Scholar 

  • Tibbies, L.A. and Woodgett, J.R., 1999, The stress-activated protein kinase pathways, Cell. Mol. Life Sei. 55, 1230–1254.

    Article  Google Scholar 

  • Tibbies, L.A., Ing, Y.L., Kiefer, F., Chan, J., Iscove, N., Woodgett, J.R. and Lassam, N.J., 1996, MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6, EMBOJ. 15,7026–7035.

    Google Scholar 

  • Tongiorgi, E., Righi, M. and Cattaneo, A., 1997, Activity-dependent dendritic targeting of BDNF and TrkB mRNAs in hippocampal neurons, J. Neurosci. 17, 9492–9505.

    PubMed  CAS  Google Scholar 

  • Vijay-Kumar, S. and Kumar, V.D., 1999, Crystal structure of recombinant bovine neurocalcin, Nat. Struct. Biol. 6, 80–88.

    Article  PubMed  CAS  Google Scholar 

  • Zufall, F. and Leinders-Zufall, T., 1997, Identification of a long-lasting form of odor adaptation that depends on the carbon Monoxide/cGMP second-messenger system, J. Neurosci. 17 2703–2712.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Braunewell, KH., Reissner, C., Gundefinger, E.D. (2000). Visinin-Like Proteins (VILIPs) — Emerging Role in Cross-Talk between Cellular Signaling Pathways. In: Pochet, R., Donato, R., Haiech, J., Heizmann, C., Gerke, V. (eds) Calcium: The Molecular Basis of Calcium Action in Biology and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0688-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0688-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6422-1

  • Online ISBN: 978-94-010-0688-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics