Skip to main content

Abstract

In hepatocytes, increases in the concentration of Ca2+ in the cytoplasmic space and mitochondrial matrix play central roles in the regulation by hormones, neurotransmitters and growth factors of metabolic pathways, the secretion of bile acids, cell growth, and the metabolism of drugs and toxic agents. One of several important forms of intracellular Ca2+ signal is the hormone-induced wave of increased cytoplasmic Ca2+ concentration which begins at the canalicular membrane and moves to the sinusoidal membrane in an individual hepatocyte, and travels between neighbouring hepatocytes via gap junctions. The nature of this Ca2+ signal is, in part, a product of the polarised structure of the hepatocyte. This structure also has an important bearing on the process by which the Ca2+ wave is generated. The maintenance of successive waves of increased cytoplasmic Ca2+ concentration involves the inositol 1,4,5-trisphosphate and ryanodine Ca2+ channels in the endoplasmic reticulum, Ca2+ channels and transporters in the mitochondria, a variety of plasma membrane Ca2+ channels and the plasma membrane (Ca2+ + Mg2+)ATP-ase, GTP-binding regulatory proteins and the cytoskeleton. Glucagon, in the presence of a hormone which generates inositol 1,4,5-trisphosphate, causes a profound stimulation of Ca2+ inflow and increases the mitochondrial Ca2+ concentration. The latter contributes to the regulation of mitochondrial ATP synthesis. Changes or abnormalities in the intracellular Ca2+ signalling pathways in hepatocytes may underlie a number of diseased states, including some forms of cholestasis, and the response of the liver to toxic insults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Applegate, T.L., Karjalainen, A. and Bygrave, F.L., 1997, Rapid Ca2+ influx induced by the action of dibutyl-hydroquinone and glucagon in the perfused rat liver, Biochem. J. 323, 463–467.

    PubMed  CAS  Google Scholar 

  • Brereton, H.M., Harland, M.L., Froscio, M., Petronijevic, T. and Barritt, G.J., 1997, Novel variants of voltage-operated calcium channel α 1-subunit transcripts in a rat liver-derived cell line: Deletion in the IVS4 voltage-sensing region, Cell Calcium 22, 39–52.

    Article  PubMed  CAS  Google Scholar 

  • Capiod, T., 1998, ATP-activated cation currents in single guinea-pig hepatocytes, J. Physiol. 507.3, 795–805.

    Article  PubMed  Google Scholar 

  • Crenesse, D., Hugues, M., Ferre, C., Poiree, J.C., Benoliel, J., Dolisi, C. and Gugenheim, J., 1999, Inhibition of calcium influx during hypoxia/reoxygenation in primary cultured rat hepatocytes, Pharmacol. 58, 160–170.

    Article  CAS  Google Scholar 

  • Feng, L., Subbaraya, I., Yamamoto, N., Baehr, W. and Kraus-Friedmann, N., 1996, Expression of photoreceptor cyclic nucleotide-gated cation channel α subunit (CNGCα) in the liver and skeletal muscle, FEBS Lett. 395, 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Fernando, K.C. and Barritt, G.J., 1995, Characterisation of the divalent cation channels of the hepatocyte plasma membrane receptor-activated Ca2+ inflow system using lanthanideions, Biochim. Biophys. Acta 1268, 97–106.

    Article  PubMed  Google Scholar 

  • Fernando, K.C. and Barritt, G.J., 1996, Pinocytosis in 2,5-di-tert-butylhydroquinone-stimulated hepatocytes and evaluation of its role in Ca2+ inflow, Mol. Cell. Biochem. 162, 23–29.

    Article  PubMed  CAS  Google Scholar 

  • Fernando, K.C., Gregory, R.B., Katsis, F., Kemp, B.E. and Barritt, G.J., 1997, Evidence that a low-molecular-mass GTP-binding protein is required for store-activated Ca2+ inflow in hepatocytes, Biochem. J. 328, 463–471.

    PubMed  CAS  Google Scholar 

  • Fernando, K.C., Gregory, R.B. and Barritt, G.J., 1998, Protein kinase A regulates the disposition of Ca2+ which enters the cytoplasmic space through store-operated Ca2+ channels in rat hepatocytes by diverting inflowing Ca2+ to mitochondria, Biochem. J. 330, 1179–1187.

    PubMed  CAS  Google Scholar 

  • Frost, L., Mahoney, J., Field, J. and Farrell, G.C., 1996, Impaired bile flow and disordered hepatic calcium homeostasis are early features of halothane-induced liver injury in guinea pigs, Hepatol. 23, 80–86.

    Article  CAS  Google Scholar 

  • Graf, J. and Häussinger, D., 1996, Ion transport in hepatocytes: Mechanisms and correlations to cell volume, hormone actions and metabolism, J. Hepatol. 24, 53–77.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, R.B., Wilcox, R.A., Berven, L.A., van Straten, N.CR., van der Marel, G.A., van Boom, J.H. and Barritt, G.J., 1999, Evidence for the involvement of a small subregion of the endoplasmic reticulum in the inositol trisphosphate receptor-induced activation of Ca2+ inflow in rat hepatocytes, Biochem. J. 341, 401–408.

    Article  PubMed  CAS  Google Scholar 

  • Ham, A.W., 1965, Textbook of Histology, 5th edition, J.B. Lippincott, Philadelphia.

    Google Scholar 

  • Harteneck, C., Plant, T.D. and Schultz, G., 2000, From worm to man: Three subfamilies of TRP channels, Trends Neurosci. 23, 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Ikari, A., Sakai, H. and Takeguchi, N., 1997, ATP, thapsigargin and cAMP increase Ca2+ in rat hepatocytes by activating three different Ca2+ influx pathways, Japanese J. Physiol. 47, 235–239.

    Article  CAS  Google Scholar 

  • Kass, G.E.N., Webb, D.-L., Chow, S.C., Llopis, J. and Berggren, P.-O., 1994, Receptor-mediated Mn2+ influx in rat hepatocytes: Comparison of cells loaded with fura-2 ester and cells microinjected with fura-2 salt, Biochem. J. 302, 5–9.

    PubMed  CAS  Google Scholar 

  • Komazaki, S., Ikemoto, T., Takeshima, H., Iino, M., Endo, M. and Nakamura, H., 1998, Morphological abnormalities of adrenal gland and hypertrophy of liver in mutant mice lacking ryanodine receptors, Cell Tissue Res. 294, 467–473.

    Article  PubMed  CAS  Google Scholar 

  • Lenz, T. and Kleineke, J.W., 1997, Hormone-induced rise in cytosolic Ca2+ in axolotl hepatocytes: Properties of the Ca2+ influx channel, Am. J. Physiol. 273, C1536–C1532.

    Google Scholar 

  • Lidofsky, S.D., Sostman, A. and Fitz, J.G., 1997, Regulation of cation-selective channels in liver cells, J. Membr. Biol. 157, 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Motoyama, K., Karl, I.E., Flye, M.W., Osborne, D.F. and Hotchkiss, R.S., 1999, Effect of Ca2+ agonists in the perfused liver: Determination via laser scanning confocal microscopy, Am. J. Physiol. 276, R575–R585.

    PubMed  CAS  Google Scholar 

  • Nathanson, M.H., Burgstahler, A.D. and Fallon, M.B., 1994, Multistep mechanism of polarized Ca2+ wave patterns in hepatocytes, Am. J. Physiol. 267, G338–G349.

    PubMed  CAS  Google Scholar 

  • Patel, S., Robb-Gaspers, L.D., Stellate, K.A., Shon, M. and Thomas, A.P., 1999, Coordination of calcium signalling by endothelial-derived nitric oxide in the intact liver, Nature Cell Biol. 1, 467–471.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, O.H., Burdakov, D. and Tepikin, A.V., 1999, Regulation of store-operated calcium entry: Lessons from a polarized cell, Eur. J. Cell Biol. 78, 221–223.

    Article  PubMed  CAS  Google Scholar 

  • Robb-Gaspers, L.D., Rutter, G.A., Burnett, P., Hajnóczky, G., Denton, R.M. and Thomas, A.P., 1998, Coupling between cytosolic and mitochondrial calcium oscillations: Role in the regulation of hepatic metabolism, Biochim. Biophys. Acta 1366, 17–32.

    Article  PubMed  CAS  Google Scholar 

  • Spray, D.C., Ginzberg, R.D., Morales, E.A., Gatmaitan, Z. and Arias, I.M., 1986, Electro-physiological properties of gap junctions between dissociated pairs of rat hepatocytes, J. Cell Biol. 103, 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Tordjmann, T., Berthon, B., Jacquemin, E., Clair, C., Stelly, N., Guillon, G., Claret, M. and Combettes, L., 1998, Receptor-oriented intercellular calcium waves evoked by vasopressin in rat hepatocytes, EMBO J. 17, 4695–4703.

    Article  PubMed  CAS  Google Scholar 

  • Tran, D., Stelly, N., Tordjmann, T., Durroux, T., Dufour, M.N., Forchioni, A., Seyer, R., Claret, M. and Guillon, G., 1999, Distribution of signaling molecules involved in vasopressin-induced Ca2+ mobilisation in rat hepatocyte multiplets, J. Histochem. Cytochem. 47, 601–616.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., O’Connell, B., Dykeman, R., Sakai, T., Delporte, C., Swaim, W., Zhu, X., Birnbaumer, L. and Ambudkar, I.S., 1999, Cloning of Tip1β isoform from rat brain: Immunodetection and localisation of the endogenous Trp1 protein, Am. J. Physiol. 276, C969–C979.

    PubMed  CAS  Google Scholar 

  • Woods, N.M., Dixon, C.J., Yasumoto, T., Cuthbertson, K.S.R. and Cobbold, P.H., 1999, Maitotoxin-induced free Ca changes in single rat hepatocytes, Cell. Signal. 11, 805–811.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barritt, G.J. (2000). Calcium Signalling in Liver Cells. In: Pochet, R., Donato, R., Haiech, J., Heizmann, C., Gerke, V. (eds) Calcium: The Molecular Basis of Calcium Action in Biology and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0688-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0688-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6422-1

  • Online ISBN: 978-94-010-0688-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics