Skip to main content

Integrated Modelling of ACID Mine Drainage Impact on a Wetland Stream using Landscape Geochemistry, GIS Technology and Statistical Methods

  • Chapter
Deposit and Geoenvironmental Models for Resource Exploitation and Environmental Security

Part of the book series: Nato Science Partnership Subseries: 2 (closed) ((ASEN2,volume 80))

Abstract

The attenuation of Cu, Fe, Mn, Ni, Pb and Zn originating from acidic ore mine leachate is studied in a natural wetland stream environment in central Sweden. A sequential chemical extraction procedure is used to investigate fractions that are expected to act as potential sinks of the six metals studied in the stream sediment. Geochemical abundances, geochemical gradients and geochemical flow patterns are analysed and modelled and the stream sediments are interpreted as an oxidising landscape geochemical barrier. Sampling locations and geochemical barriers are identified using landscape geochemical methods and GIS techniques. For data modelling robust statistical methods of Exploratory Data Analysis are used to treat small sample sizes with multi-modal character and outlying values. The spatial variability of metal retention in the stream sediments is studied by multivariate data analysis methods.

Results of data analysis show that stream sediments act as a complex oxidising-adsorption barrier and the heterogeneity of the geochemical barrier is controlled by redox gradients in the sediments, which can be sufficiently characterised by the distribution of Fe fractions. Data analysis suggests that adsorption and co-precipitation with Fe oxy-hydroxide are major processes beside the adsorption on organic matter. Mn is probably specifically adsorbed on Fe oxy-hydroxides, and beside Zn, it is least retained in the sediment. Pb, Cu and Ni are found in considerable quantity in the reducible fraction and are suggested to occur occluded in Fe oxy-hydroxides. On the other hand, organic matter provides important adsorption sites for Cu and Pb and controls exchangeable metals, too. Based on enrichment factor calculation and correlation analysis in the pore water and the oxide-bound fractions Ni, Cu and Zn are thought to represent the effects of ore mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alloway B. J. (ed.) (1990) Heavy Metals in Soils. Blackie, London.

    Google Scholar 

  2. Alpers C. N., Blowes D. W., Nordstrom D. K. and Jambor J. L. (1994) Secondary minerals and acid mine water chemistry. In The Environmental Chemistry of Sulfide Mine Wastes, (eds. D. W. Blowes and J. L. Jambor), pp. 247–270. Mineralogical Association of Canada, Waterloo, Ontario.

    Google Scholar 

  3. Benjamin M. M. and Leckie J. O. (1981a) Conceptual model for metal-ligand-surface interactions during adsorption. Environ. Sci. Technol. 15, 1050–1057.

    Article  Google Scholar 

  4. Benjamin M. M. and Leckie J. O. (1981b) Competitive adsorption of Cd, Cu, Zn and Pb on amorphous iron oxyhydroxide. J. Colloid Interface Sci. 79, 209–221.

    Article  Google Scholar 

  5. Benjamin M. M. and Leckie J. O. (1981c) Multiple-site adsorption of Cd, Cu, Zn and Pb on amorphous iron oxyhydroxide. J. Colloid Interface Sci. 79,209–221.

    Article  Google Scholar 

  6. Berner A. (1980) Early Diagenesis: A Theoretical Approach. Princeton University Press.

    Google Scholar 

  7. Biham J. M. (1994) Mineralogy of ochre deposits formed by sulfide oxidation. In The Environmental Chemistry of Sulfide Mine Wastes, (eds. D. W. Blowes and J. L. Jambor), pp. 103–132. Mineralogical Association of Canada, Waterloo, Ontario.

    Google Scholar 

  8. Bigham J. M., Schwertmann U. and Carlson L. (1992) In Biomineralization of Iron and Manganese: Modern and Ancient Environments, (eds. H. C. W. Skinner and W. Fitzpatrick), pp. 219–232. Catena Supplement 21, Catena Verlag, Cremlingen-Destedt.

    Google Scholar 

  9. Blowes D. W. and Jambor J. L. (eds.) (1994) The Environmental Chemistry of Sulfide Mine Wastes. Mineralogical Association of Canada, Waterloo, Ontario.

    Google Scholar 

  10. Bodek I., Lyman W. J., Reehl W. F. and Rpsemblatt D. H. (eds.) (1988) Environmental Inorganic Chemistry. Pergamon Press Inc., New York.

    Google Scholar 

  11. Brooks R. R. (1973) Biogeochemical parameters and their significance for mineral exploration. J. Applied Ecology 10, 825–836.

    Article  Google Scholar 

  12. Carpenter R. H., Pope T. A. and Smith R. L. (1975) Fe-Mn oxide coatings in stream sediment geochemical surveys. J. Geochem. Explor. 4, 349–363.

    Article  Google Scholar 

  13. Chambers, J. M., Cleveland W. S., Kleiner B. and Tukey P. A. (1983) Graphical Methods for Data Analysis. Wadsworth International Group, Belmont, Calif, Duxbury Press, Boston, MA.

    Google Scholar 

  14. Davenport P. H. (1990) A comparison of regional geochemical data from lakes and streams in northern Labrador; implications for mixed-media geochemical mapping. J. Geochem. Explor. 39, 1–13.

    Article  Google Scholar 

  15. Davis J. A. and Leckte J. O. (1978a) Surface ionisation and complexation at the oxide/water interface. II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J. Colloid Interface Sci. 67, 90–107.

    Article  Google Scholar 

  16. Davis J. A. and Leckie J. O. (1978b) Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides. Environ. Sci. Technol. 12, 1309–1315.

    Article  Google Scholar 

  17. Deurer R., Forstner U. and Schmoll G. (1978) Selective chemical extraction of carbonate-associated metals from recent lacustrine sediments. Geochim. Cosmochim. Acta 42, 425–427.

    Article  Google Scholar 

  18. Fortescue J. A. C. (1984) Environmental Geochemistry. Springer-Verlag, New York.

    Google Scholar 

  19. Fortescue J. A. C. (1992) Landscape Geochemistry: retrospect and prospect - 1990. Appl. Geochem. 7, 1–53

    Article  Google Scholar 

  20. Franzen L. G. (1985) Peat in Sweden - an important energy resource or just a paranthesis?. In Proceedings of the Peat and Environment '85 International Peat Society Symposium. The Swedish National Peat Commitee, Stockholm.

    Google Scholar 

  21. Gaál G. (1990) Tectonic styles of early proterozoic ore deposition in the Fennoscandian Shield. Precambr. Res. 46, 83–114.

    Article  Google Scholar 

  22. Gadsby J. W., Malick J. A. and Day S.J. (eds.) (1990) Acid Mine Drainage: Designing for Closure. BiTech Publishers Ltd., Vancouver.

    Google Scholar 

  23. Gibbs R. J. (1977) Transport phases of transition metals in the Amazon and Yukon rivers. Geol. Soc. Am. Bull. 88, 829–843.

    Article  Google Scholar 

  24. Glazovskaya M. A. (1963) On geochemical principles of the classification of natural landscapes. Int. Geol. Rev. 5, 1403–1430.

    Article  Google Scholar 

  25. Herbert R. (1994) Metal transport in ground water contaminated by acid mine drainage. Nordic Hydrology 25, 193–212.

    Google Scholar 

  26. Hoaglin D. C., Mosteller F. and Tukey J. W. (1983) Undertanding Robust and Exploratory Data Analysis. John Wiley and Sons Inc., New York.

    Google Scholar 

  27. Horne R. A. (1978) The Chemistry of our Environment. John Wiley and Sons, New York.

    Google Scholar 

  28. Jambor J. L. (1994) Mineralogy of sulfide rich tailings and their oxidation products. In The Environmental Chemistry of Sulfide Mine Wastes, (eds. D. W. Blowes and J. L. Jambor), pp. 59–102. Mineralogical Association of Canada, Waterloo, Ontario.

    Google Scholar 

  29. Jordan G., Szucs A., Qvarfort U. and Szekely B. (1997) Evaluation of metal retention in a wetland receiving acid mine drainage. Proc. of the 30 th IGC, 19, 189–206.

    Google Scholar 

  30. Karlsson S., Allard B. and Håkansson K. (1988) Chemical characterization of stream-bed sediments receiving high loadings of acid mine effluents. Chem. Geol. 67, 1–15.

    Article  Google Scholar 

  31. Kheboian C. and Bauer C. F. (1987) Accuracy of selective extraction procedures for metal speciation in model aquatic sediments. Anal. Chem. 59, 1417–1423.

    Article  Google Scholar 

  32. Kurzl H. (1988) Exploratory data analysis: recent advances for the interpretation of geochemical data. J. Geochem. Explor. 30, 309–322.

    Article  Google Scholar 

  33. Lovley D. R. and Phillips E. J. P. (1987) Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Env. Microbiol. 52, 751–757.

    Google Scholar 

  34. Lundin L. (1982) Mark-och grundwatten: moränmark och mark typens betydelse for avrinningen. UNGI Report 56, University of Uppsala, (in Swedish).

    Google Scholar 

  35. Magnussonn H. (1953) Malm Geology. Jernkontoret, (in Swedish).

    Google Scholar 

  36. Mantei E. J., Gutierrez M. and Zhou Y. (1996) Use of normalized metal concentrations in the Mn oxides/hydrous oxides extraction phase of stream sediments to enhance the difference between a landfill emission plume and background. Appl. Geochem. 11, 803–810.

    Article  Google Scholar 

  37. Moore P. D. and Bellamy D. J. (1974) Peatlands. Springer-Verlag, New York.

    Book  Google Scholar 

  38. Nirel M. V. and Morel F. M. M. (1990) PitMs of sequential extractions. Water Resources 24, 1055–1056.

    Google Scholar 

  39. Nordstrom D.K. (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In Acid Sulfate Weathering (eds. J.A. Kittrick, D.S. Fanning and L.R. Hossner), pp. 37–56, SSSA Spec. Publ. 10. SSSA, Madison, WI.

    Google Scholar 

  40. Pakarinen P., Tolonen K. and Soveri J. (1980) Distribution of trace metals and sulfur in the surface peat of Finnish raised bogs. Proc. 6 th Int. Peat Congr., Duluth, U.S.A.

    Google Scholar 

  41. Perel’man A. I. (1975) Geochimia Landshafta. Vysokaya Skola, Moscow, (in Russian).

    Google Scholar 

  42. Perel’man A. I. (1986) Geochemical barriers: theory and practical applications. Appl. Geochem. 1, 669–680.

    Article  Google Scholar 

  43. Rabenhorst M. C. and Haering K. C. (1989) Soil micromorphology of a Chesapeake Bay tidal marsh: implications for sulfur accumulation. Soil Sci. 147, 339–347.

    Article  Google Scholar 

  44. Rabenhorst M. C. and Haering K. C. (1992) Iron sulfidization in tidal marsh soils. In Biomineralization of Iron and Manganese: Modern and Ancient Environments, (eds. H.C.W. Skinner and W. Fitzpatrick), pp. 203–217. Catena Supplement 21, Catena Verlag, Cremlingen-Destedt.

    Google Scholar 

  45. Rauret G., Rubio R. and López-Sánches J. F. (1989) Optimization of Tessier's procedure for metal solid speciation in river sediments. Int. J. Anal. Chem. 36, 69–83.

    Article  Google Scholar 

  46. Reynolds W. D., Brown D. A., Mathur S. P. and Overend R. P. (1992) Effects of in-situ gas accumulation on the hydraulic conductivity of peat. Soil Sci. 153, 397–408.

    Article  Google Scholar 

  47. Schwertmann U. and Fitzpatrick R. W. (1992) Iron minerals in surface environments. In Biomineralization of Iron and Manganese: Modern and Ancient Environments, (eds. H.C.W. Skinner and W. Fitzpatrick), pp. 7–30. Catena Supplement 21, Catena Verlag, Cremlingen-Destedt.

    Google Scholar 

  48. Shotyk W. (1988) Review of the inorganic geochemistry of peats and peatland waters. Earth Sci. Rev. 25, 95–176

    Article  Google Scholar 

  49. Singer P. and Stumm W. (1970) Acid mine drainage: The rate controlling step. Science 167, 1121–1123.

    Article  Google Scholar 

  50. Singh S. K. and Subramanian V. (1984) Hydrous Fe and Mn oxides - Scavengers of heavy metals in the aquatic environment. CRC Crit. Rev. Environ. Control. 14, 33–90.

    Article  Google Scholar 

  51. Stumm W. and Morgan J. J. (1981) Aquatic Chemistry. (2th ed.) John Wiley and Sons, New York.

    Google Scholar 

  52. Sullivan P., Yelton J. and Reddy K. (1988) Iron sulfide oxidation and the chemistry of acid generation. Environ. Geol. Water Sci. 11,289–295.

    Article  Google Scholar 

  53. Tarutis W. J. J.R. and Unz R. F. (1992) Behaviour of sedimentary Fe and Mn in a natural wetland receiving acidic mine drainage, Pennsylvania, U.S.A. Appl. Geochem. 7, 77–85.

    Article  Google Scholar 

  54. Tegengren F. (1924) Sveriges ädlare malmer och bergverk. Sveriges Geologiska Undersökning, Series Ca No. 17, (in Swedish).

    Google Scholar 

  55. Tessier A., Campbell P. G. C. and Bisson M. (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–851.

    Article  Google Scholar 

  56. Tessier A., Campbell P. G. C. and Bisson M. (1980) Trace metal speciation in the Yamaska and Saint Francois Rivers (Quebec). Can. J. Earth Sci. 17, 90–105.

    Article  Google Scholar 

  57. Tessier A., Rapin F. and Carignan R. (1985) Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochim. Cosmochim. Acta 49, 183–194.

    Article  Google Scholar 

  58. Tukey J. W. (1977) Exploratory Data Analysis. Addison-Wesley, Reading, MA.

    Google Scholar 

  59. Velleman P. F. and Hoaglin D. C. (1981) Applications, Basics and Computing of Exploratory Data Analysis. Duxbury Press, Boston.

    Google Scholar 

  60. Wickman F. E. (1994) The Siljan Ring impact structure: possible connections with minor ores in its neighbourhood. GFF 116, 145–146.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Szücs, A., Jordán, G., Qvarfort, U. (2002). Integrated Modelling of ACID Mine Drainage Impact on a Wetland Stream using Landscape Geochemistry, GIS Technology and Statistical Methods. In: Fabbri, A.G., Gaál, G., McCammon, R.B. (eds) Deposit and Geoenvironmental Models for Resource Exploitation and Environmental Security. Nato Science Partnership Subseries: 2 (closed), vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0303-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0303-2_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0990-7

  • Online ISBN: 978-94-010-0303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics