Skip to main content

Coordination and Oxidation States of Iron Incorporated in Mesoporous MCM41

  • Conference paper
Industrial Applications of the Mössbauer Effect
  • 266 Accesses

Abstract

Mesoporous Fe-MCM41 samples (Si/Fe = 25) were synthesized and characterized under evacuation and reducing/oxidizing treatments by in situ FTIR and Mössbauer spectroscopies. Both Fe(II) and Fe(III) located in low coordination states in top layers of pore walls exhibit Lewis acidity and may participate in Fe(III) ↔ Fe(II) processes at low temperatures (570 K). Furthermore, Fe(III) ↔ Fe(II) cycles can be achieved and repeated with participation of the full amount of iron at higher temperatures (670 K). The accompanying formation of oxygen vacancies and restoration of the structure in the reverse process does not result in extended damages; the MCM41 structure retains its stability under the conditions applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corma, A., Chem. Rev. 97 (1997), 2373.

    Article  CAS  Google Scholar 

  2. Schacht, S., Janicke, M. and Schüth, F. Microporous and Mesoporous Materials 22 (1998), 485.

    Article  CAS  Google Scholar 

  3. Biz, S. and Occelli, M. L., Catal Rev. — Sci. Eng. 40 (1998), 329.

    Article  CAS  Google Scholar 

  4. Yuan, Z. Y., Liu, S. Q., Chen, T. H., Wang, J. Z. and Li, H. X., J. Chem. Soc., Chem. Commun. (1995), 973.

    Google Scholar 

  5. Badamali, S. K., Vinodhkumar, R., Sundararajan, U. and Selvam, P., In: V. Murugesan, B. Ara-bindoo and M. Palanichamy (eds), Recent Trends in Catalysis, Narosa Publ. House, New Delhi, 1999, p. 545.

    Google Scholar 

  6. He, N.-Y, Bao, S.-L. and Xu, Q.-H., Stud. Surf. Sci. Catal 105 (1997), 85.

    Article  Google Scholar 

  7. F. Béland, Echchaded, B. and Bonneviot, L., Stud. Surf. Sci. Catal 130 (2000), 2945.

    Article  Google Scholar 

  8. Badamali, S. K., Sakthivel, A. and Selvam, P., Catal. Lett. 65 (2000), 153.

    Article  CAS  Google Scholar 

  9. He, N., Bao, S. and Xu, Q., Appl. Catal. A 169 (1998), 29.

    Article  CAS  Google Scholar 

  10. Pál-Borbély, G., Szegedi, Á., Lázár, K. and Beyer, H. K., Stud. Surf. Sei. Catal. 135 (2001), 150.

    Article  Google Scholar 

  11. Lázár, K., Borbély, G. and Beyer, H. K., Zeolites 11 (1991), 214.

    Article  Google Scholar 

  12. Lázár, K., Lejeune, G., Ahedi, R. K., Shevade, S. S. and Kotasthane, A. N., J. Phys. Chem. B. 102 (1998), 4865.

    Article  Google Scholar 

  13. Parry, E. P., J. Catalysis 2 (1963), 371.

    Google Scholar 

  14. Yamada, K., Kondo, S. and Segawa, K., Microporous and Mesoporous Materials 35–36 (2000), 227.

    Article  Google Scholar 

  15. Rakic, V. M., Hercigonja, R. V. and Dondur, V. T., Microporous and Mesoporous Materials 27 (1999), 27.

    Article  CAS  Google Scholar 

  16. Burns, R. G., Hyp. Interact. 91 (1994), 739.

    Article  CAS  Google Scholar 

  17. Uytterhoeven, J. B., Christner, L. G. and Hall, W. K., J. Phys. Chem. 76 (1965), 2117.

    Article  Google Scholar 

  18. Burns, R. G., In: K. Prassides (ed.), Mixed Valency Systems, Applications in Chemistry, Physics and Biology, NATO ASI Series, Vol. 343, Kluwer, 1991, p. 175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lázár, K., Pál-Borbély, G., Szegedi, Á., Beyer, H.K. (2002). Coordination and Oxidation States of Iron Incorporated in Mesoporous MCM41. In: Cook, D.C., Hoy, G.R. (eds) Industrial Applications of the Mössbauer Effect. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0299-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0299-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3950-5

  • Online ISBN: 978-94-010-0299-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics