Skip to main content

The Structural Biology of NF-κB

  • Chapter
Nuclear Factor кB

Abstract

The mechanisms underlying activation and DNA binding of the transcription factor NF-κB are central to our understanding of the cellular response to stress, development and apoptosis, among other key physiological processes (Baeuerle & Henkel, 1994; Siebenlist et al., 1994; Baeuerle & Baltimore, 1996; Baldwin, 1996; Ghosh et al., 1998; Gilmore, 1999; Silverman & Maniatis, 2001). Central to gene regulation by NF-κB is its release from inhibition by IκB and subsequent recognition of specific promoters of inducible genes. Three-dimensional structures of NF-κB proteins in complex with κB DNA or IκB inhibitors have provided new insights into the complexities of the NF-κB-signaling pathways and NF-κB-mediated gene regulation. In this review, we shall focus on the structural features of NF-κB/DNA and IκB/NF-κB complexes, as well as on the relation of these structures to biological function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baeuerle PA & Baltimore D (1988) IκB: a specific inhibitor of the NF-κB transcription factor. Science 242: 540–546.

    Article  PubMed  CAS  Google Scholar 

  • Baeuerle PA & Baltimore D (1996) NF-κB: ten years after. Cell 87: 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Baeuerle PA & Henkel T (1994) Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12: 141–179.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin AS (1996) The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14: 649–683.

    Article  PubMed  CAS  Google Scholar 

  • Barroga CF, Stevenson JK, Schwarz EM & Verma IM (1995) Constitutive phosphorylation of IκBα by casein kinase II. Proc. Natl. Acad. Sci. USA 92: 7637–7641.

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Groner B & Müller CW (1998) Three-dimensional structure of the Stat3β homodimer bound to DNA. Nature 394: 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Bork P (1993) Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins 17: 363–374.

    Article  PubMed  CAS  Google Scholar 

  • Bours V, Franzoso G, Azarenko V, Park S, Kanno T, Brown K & Siebenlist U (1993) The oncoprotein Bcl-3 directly transactivates through κB motifs via association with DNA-binding p50B homodimers. Cell 72: 729–739.

    Article  PubMed  CAS  Google Scholar 

  • Bundy DL & McKeithan TW (1997) Diverse effects of Bcl-3 phosphorylation on its modulation of NF-κB p52 homodimer binding to DNA. J. Biol. Chem. 272: 33132–33139.

    Article  PubMed  CAS  Google Scholar 

  • Chen FE, Huang D-B, Chen Y-Q & Ghosh G (1998a) Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA. Nature 391: 410–413.

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Vinkemeier U, Hao Y, Jeruzalmi D, Darnell JE & Kuriyan J (1998b) Crystal structure of a tyrosine phosphorylated Stat-1 dimer bound to DNA. Cell 93: 827–839.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-Q, Ghosh S & Ghosh G (1998c) A novel DNA recognition mode by the NF-κB p65 homodimer. Nature Struct. Biol. 5: 67–73.

    Article  PubMed  Google Scholar 

  • Chen Y-Q, Sengchanthalangsy LL, Hackett A & Ghosh G (2000) NF-κB p65 (RelA) homodimer uses distinct mechanisms to recognize DNA targets. Structure 8: 419–428.

    Article  PubMed  CAS  Google Scholar 

  • Cramer P, Larson CJ, Verdine GL & Müller CW (1997) Structure of the human NF-κB p52 homodimer-DNA complex at 2.1 Å resolution. EMBO J. 16: 7078–7090.

    Article  PubMed  CAS  Google Scholar 

  • Cramer P, Varrot A, Barillas-Mury C, Kafatos FC & Müller CW (1999) Structure of the specificity domain of the Dorsal homologue Gambifl bound to DNA. Structure 7: 841–852.

    Article  PubMed  CAS  Google Scholar 

  • Cross SL, Halden NF, Lenardo MJ & Leonard WJ (1989) Functionally distinct NF-κB binding sites in the immunoglobulin κ and IL-2 receptor α chain genes. Science 244: 466–469.

    Article  PubMed  CAS  Google Scholar 

  • Darnell JE (1997) Stats and gene regulation. Science 277: 1630–1635.

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Hatzubai A, Andersen JS, Ben-Shushan E, Fisher GZ, Yaron A, Bauskin A, Mercurio F, Mann M & Ben-Neriah Y (2002) Pseudosubstrate regulation of the SCF/β-TrCP ubiquitin ligase by hnRNP-u. Genes Dev. 16: 439–451.

    Article  PubMed  CAS  Google Scholar 

  • Dobrzanski P, Ryseck R-P & Bravo R (1993) Both N-and C-terminal domains of RelB are required for full transactivation: role of the N-terminal leucine zipper-like motif. Mol. Cell. Biol. 13: 1572–1582.

    PubMed  CAS  Google Scholar 

  • Ernst MK, Dunn LL & Rice NR (1995) The PEST-like sequence of IκBα is responsible for inhibition of DNA binding but not for cytoplasmic retention of c-Rel or RelA homodimers. Mol. Cell. Biol. 15: 872–882.

    PubMed  CAS  Google Scholar 

  • Escalante CR, Shen LY, Thanos D & Aggarwal AK (2002) Structure of NF-κB p65 (RelA) p50/p65 heterodimer bound to the PRDII DNA element from the interferon-β promoter. Structure 10: 383–391.

    Article  PubMed  CAS  Google Scholar 

  • Franzoso G, Bours V, Park S, Tomita-Yamaguchi M, Kelly K & Siebenlist U (1992) The candidate oncoprotein Bcl-3 is an antagonist of p50/NF-κB-mediated inhibition. Nature 359: 339–342.

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Nolan GP, Liou H-C, Scott ML & Baltimore D (1993) The candidate proto-oncogene Bcl-3 encodes a transcriptional coactivator that activates through NF-κB p50 homodimers. Genes Dev. 7: 1354–1363.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh G, Van Duyne G, Ghosh S & Sigler PB (1995) Structure of NF-κB p50 homodimer bound to a kB site. Nature 373: 303–310.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, May MJ & Kopp EB (1998) NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16: 225–260.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore TD (1999) The Rel/NF-κB signal transduction pathway. Introduction. Oncogene 18: 6842–6844.

    CAS  Google Scholar 

  • Groves MR & Barford D (1999) Topological characteristics of helical repeat proteins. Curr. Opin. Struct. Biol. 9: 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Hart DJ, Speight RE, Sutherland JD & Blackburn JM (2001) Analysis of the NF-κB p50 dimerinterface by diversity screening. J. Mol. Biol. 310: 563–575.

    Article  PubMed  CAS  Google Scholar 

  • Hatada EN, Nieters A, Wulczyn FG, Naumann M, Meyer R, Nucifora G, McKeithan TW & Scheidereit C (1992) The ankyrin repeat domains of the NF-κB precursor p105 and the proto-oncogene Bcl-3 act as specific inhibitors of NF-κB DNA binding. Proc. Natl. Acad. Sci. 89: 2489–2493.

    Article  PubMed  CAS  Google Scholar 

  • Heissmeyer V, Krappmann D, Hatada EN & Scheidereit C (2001) Shared pathways of IκB kinase-induced SCF/βTrCP-mediated ubiquitination and degradation for the NF-κB precursor p105 and IκBα. Mol. Cell. Biol. 21: 1024–1035.

    Article  PubMed  CAS  Google Scholar 

  • Huang D-B, Chen Y-Q, Ruetsche M, Phelps CB & Ghosh G (2001) X-ray crystal structure of proto-oncogene product c-Rel bound to the CD28 response element of IL-2. Structure 9: 669–678.

    Article  PubMed  CAS  Google Scholar 

  • Huang D-B, Huxford T, Chen Y-Q & Ghosh G (1997) The role of DNA in the mechanism of NF-κB dimer formation: crystal structures of the dimerization domains of the p50 and p65 subunits. Structure 5: 1427–1436.

    Article  PubMed  CAS  Google Scholar 

  • Huang TT, Kudo N, Yoshida M & Miyamoto S (2000) A nuclear export signal in the N-terminal regulatory domain of IκBα controls cytoplasmic localization of inactive NF-κB/IκBcα complexes. Proc. Natl. Acad. Sci. USA 97: 1014–1019.

    Article  PubMed  CAS  Google Scholar 

  • Huxford T, Huang D-B, Malek S & Ghosh G (1998) The crystal structure of the IκBκ/NF-κB complex reveals mechanisms of NF-κB inactivation. Cell 95: 759–770.

    Article  PubMed  CAS  Google Scholar 

  • Inoue JI, Kerr LD, Kakizuka A & Verma IM (1992) IκBγ, a 70 kD protein identical to the C-terminal half of p110 NF-κB: a new member of the IκB family. Cell 68: 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs MD & Harrison SC (1998) Structure of an IκBκ/NF-κB complex. Cell 95: 749–758.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson EM, Li P, Leon-Del-Rio A, Rosenfeld MG & Aggarwal AK (1997) Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. Genes Dev. 11: 198–212.

    Article  PubMed  CAS  Google Scholar 

  • Johnson C, Van Antwerp D & Hope TJ (1999) An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IκBα. EMBO J. 18: 6682–6693.

    Article  PubMed  CAS  Google Scholar 

  • Karin M & Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18: 621–663.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura H, Kanehira K, Okita K, Morimatsu M & Saito M (2000) MAIL, a novel nuclear IκB protein that potentiates LPS-induced IL-6 production. FEBS Lett. 485: 53–56.

    Article  PubMed  CAS  Google Scholar 

  • Kushner DB & Ricciardi RP (1999) Reduced phosphorylation of p50 is responsible for diminished NF-κB binding to the major histocompatibility complex class I enhancer in adenovirus type 12-transformed cells. Mol. Cell. Biol. 19: 2169–2179.

    PubMed  CAS  Google Scholar 

  • Lehming N, McGuire S, Brickman JM & Ptashne M (1995) Interactions of a Rel protein with its inhibitor. Proc. Natl. Acad. Sci. USA 92: 10242–10246.

    Article  PubMed  CAS  Google Scholar 

  • Leonard WJ & O’Shea JJ (1998). Jaks and Stats: biological implications. Annu Rev. Immunol. 16: 293–322.

    Article  PubMed  CAS  Google Scholar 

  • Liou HC, Nolan GP, Ghosh S, Fujita T & Baltimore D (1992) The NF-κB p50 precursor, p105, contains an internal IκB-like inhibitor that preferentially inhibits p50. EMBO J. 11: 3003–3009.

    PubMed  CAS  Google Scholar 

  • Liu J, Sodeoka M, Lane WS & Verdine GL (1994) Evidence for a non-a-helical DNA-binding motif in the Rel homology region. Proc. Natl. Acad. Sci. USA 91: 908–912.

    Article  PubMed  CAS  Google Scholar 

  • Malek S, Chen Y, Huxford T & Ghosh G (2001) IκBβ, but not IκBα, functions as a classical cytoplasmic inhibitor of NF-κB dimers by masking both NF-κB nuclear localization sequences in resting cells. J. Biol. Chem. 276: 45225–45235.

    Article  PubMed  CAS  Google Scholar 

  • McElhinny JA, Trushin SA, Bren GD, Chester N & Paya CV (1996) Casein kinase II phosphorylates IκBα at S283, S289, S293, and T291 and is required for its degradation in vitro. Mol. Cell. Biol. 16: 899–906.

    PubMed  CAS  Google Scholar 

  • Mercurio F, Didonato JA, Rosette C & Karin M (1993) P105 and p98 precursor proteins play an active role in NF-KB-mediated signal transduction. Genes Dev. 7: 705–718.

    Article  PubMed  CAS  Google Scholar 

  • Michaely P & Vennett V (1992) The ANK repeat: a ubiquitous motif involved in macromolecular recognition. Trends Cell. Biol. 2: 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Soler-Lopez M, Petosa C, Cramer P, Siebenlist U & Müller CW (2001) Crystal structure of the ankyrin repeat domain of Bcl-3: a unique member of the kB protein family. EMBO J. 20: 6180–6190.

    Article  PubMed  CAS  Google Scholar 

  • Müller CW, Rey FA, Sodeoka M, Verdine GL & Harrison SC (1995) Structure of the NF-κB p50 homodimer bound to DNA. Nature 373: 311–317.

    Article  PubMed  Google Scholar 

  • Pahl HL (1999) Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18: 6853–6866.

    Article  PubMed  CAS  Google Scholar 

  • Phelps CB, Sengchanthalangsy LL, Malek S & Ghosh G (2000) Mechanism of κB DNA binding by Rel/NF-κB dimers. J. Biol. Chem. 275: 24392–24399.

    Article  PubMed  CAS  Google Scholar 

  • Plaksin D, Baeuerle PA & Eisenbach L (1993) KBF1 (p50 NF-κB homodimer) acts as a repressor of H-2K-b gene expression in metastatic tumor cells. J. Exp. Med. 177: 1651–1662.

    Article  PubMed  CAS  Google Scholar 

  • Rao A, Luo C & Hogan PG (1997) Transcription factors of the NF-AT family: regulation and function. Annu. Rev. Immunol. 15: 707–747.

    Article  PubMed  CAS  Google Scholar 

  • Rice NR, Mackichan ML & Isräel A (1992) The precursor of NF-κB p50 has IκB-like functions. Cell 71: 243–253.

    Article  PubMed  CAS  Google Scholar 

  • Rogers S, Wells R & Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–368.

    Article  PubMed  CAS  Google Scholar 

  • Ryseck R-P, Novotny J & Bravo R (1995) Characterization of elements determining the dimerization properties of RelB and p50. Mol. Cell. Biol. 15: 3100–3109.

    PubMed  CAS  Google Scholar 

  • Ryseck RP, Bull P, Takamiya M, Bours V, Siebenlist U, Dobrzanski P & Bravo R (1992) RelB, a new Rel family transcription activator that can interact with p50-NF-κB. Mol. Cell. Biol. 12: 674–684.

    PubMed  CAS  Google Scholar 

  • Sanjabi S, Hoffmann A, Liou H-C, Baltimore D & Smale ST (2000) Selective requirement for c-Rel during IL-12 p40 gene induction in macrophages. Proc. Natl. Acad. Sci. USA 97: 12705–12710.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz EM, Van Antwerp D & Verma IM (1996) Constitutive phosphorylation of IκBα by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IκBα. Mol. Cell. Biol. 16: 3554–3559.

    PubMed  CAS  Google Scholar 

  • Sedgwick SG & Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem. Sci. 24: 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Sengchanthalangsy LL, Datta S, Huang D-B, Anderson E, Braswell EH & Ghosh G (1999) Characterization of the dimer interface of transcription factor NF-κB p50 homodimer. J. Mol. Biol. 289: 1029–1040.

    Article  PubMed  CAS  Google Scholar 

  • Shiina T, Morimatsu M, Kitamura H, Ito T, Kidou S, Matsubara K, Matsuda Y, Saito M & Syuto B (2001) Genomic organization, chromosomal localization, and promoter analysis of the mouse MAIL gene. Immunogenetics 53: 649–655.

    Article  PubMed  CAS  Google Scholar 

  • Siebenlist U, Franzoso G & Brown K (1994). Structure, regulation and function of NF-κB. Annu. Rev. Immunol. 12: 405–455.

    Google Scholar 

  • Silverman N & Maniatis T (2001) NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev. 15: 2321–2342.

    Article  PubMed  CAS  Google Scholar 

  • Simeonidis S, Liang S, Chen G & Thanos D (1997) Cloning and functional characterization of mouse IκBε. Proc. Natl. Acad. Sci. USA 94: 14372–14377.

    Article  PubMed  CAS  Google Scholar 

  • Tam WF, Lee LH, Davis L & Sen R (2000) Cytoplasmic sequestration of Rel proteins by IκBα requires Crml-dependent nuclear export. Mol. Cell. Biol. 20: 2269–2284.

    Article  PubMed  CAS  Google Scholar 

  • Tam WF & Sen R (2001) IκB family members function by different mechanisms. J. Biol. Chem. 276: 7701–7704.

    Article  PubMed  CAS  Google Scholar 

  • Thompson JE, Phillips RJ, Erdjument-Bromage H, Tempst P & Ghosh S (1995) IκBβ regulates the persistent response in a biphasic activation of NF-κB. Cell 80: 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Tran K, Merika M & Thanos D (1997) Distinct functional properties of IκBα and IκBβ. Mol. Cell. Biol. 17: 5386–5399.

    PubMed  CAS  Google Scholar 

  • Verma IM, Stevenson K, Schwarz EW, Van Antwerp D & Miyamoto S (1995) Rel/NF-κB/κB family: intimate tales of association and dissociation. Genes Dev. 9: 2723–2735.

    Article  PubMed  CAS  Google Scholar 

  • Whiteside ST, Epinat J-C, Rice NR & Isräel A (1997) IκBε, a novel member of the kB family, controls RelA and c-Rel NF-κB activity. EMBO J. 16: 1413–1426.

    Article  PubMed  CAS  Google Scholar 

  • Whiteside ST & Isräel A (1997) IκB proteins: structure, function and regulation. Semin. Canc. Biol. 8: 75–82.

    Article  CAS  Google Scholar 

  • Wulczyn FG, Naumann M & Scheidereit C (1992) Candidate proto-oncogene Bcl-3 encodes a subunit-specific inhibitor of transcription factor NF-κB. Nature 358: 597–599.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Muta T & Takeshige K (2001) A novel IκB protein, IκBζ, induced by proinflammatory stimuli, negatively regulates NF-κB in the nuclei. J. Biol. Chem. 276: 27657–27662.

    Article  PubMed  CAS  Google Scholar 

  • Zabel U & Baeuerle PA (1990) Purified human IκB can rapidly dissociate the complex of the NF-κB transcription factor with its cognate DNA. Cell 61: 255–266.

    Article  PubMed  CAS  Google Scholar 

  • Zabel U, Henkel T, Dos Santos Silva M & Baeuerle PA (1993) Nuclear uptake control of NF-κB by MAD-3, an IκB protein present in the nucleus. EMBO J. 12: 201–211.

    PubMed  CAS  Google Scholar 

  • Zhong H, May MJ, Jimi E & Ghosh S (2002) The phosphorylation status of nuclear NF-κB determines its association with CBP/p300 or HDAC-1. Mol. Cell 9: 625–636.

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Voll RE & Ghosh S (1998) Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1: 661–671.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huxford, T., Ghosh, G. (2003). The Structural Biology of NF-κB. In: Beyaert, R. (eds) Nuclear Factor кB. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0163-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0163-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3983-3

  • Online ISBN: 978-94-010-0163-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics