Skip to main content

New Insights into the Regulation of Nf-кB

Roles for Phosphorylation and Acetylation of NF-кB Subunits

  • Chapter
Nuclear Factor кB

Abstract

Long considered to be a pivotal transcription factor regulating both the immune and inflammatory responses, NF-кB is now known to regulate such diverse processes as cell proliferation, differentiation and apoptotic cell death. NF-кB belongs to a family of transcription factors, all sharing an N-terminal Rel homology domain. NF-кB is tightly regulated within the cell at multiple levels, both during its activation and mobilization from the cytoplasm and before or during its transcriptional activation in the nucleus. Considering the wide variety of signals activating this transcription factor and the relative transcriptional strength of the RelA subunit, it is not surprising that NF-кB is regulated at multiple levels. The classical pathway leading to NF-кB activation proceeds via a kinase cascade, culminating in phosphorylation and degradation of IкBα, one member of a family of inhibitors controlling NF-кB action (Senftleben & Karin, 2002). NF-кB activation can be viewed as two discrete phases. The first comprises the proximal events leading to degradation of IкBα and rapid translocation of the liberated NF-кB complex into the nucleus. The second phase involves posttranslational modification of the NF-кB subunits themselves by both phosphorylation and acetylation, which are required for full activity of the induced nuclear NF-кB complex. While acetylation appears to occur in the nucleus, certain phosphorylation events in the second phase are likely executed in the cytoplasm before nuclear entry of NF-кB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashburner BP, Westerheide SD & Baldwin AS (2001) The p65 (RelA) subunit of NF-кB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol. Cell. Biol. 21: 7065–7077.

    Article  PubMed  CAS  Google Scholar 

  • Baeuerle PA, Lenardo M, Pierce JW & Baltimore D (1988) Phorbol-ester-induced activation of the NF-кB transcription factor involves dissociation of an apparently cytoplasmic NF-кB/inhibitor complex. Cold Spring Harb. Symp. Quant. Biol. 53: 789–789.

    Article  PubMed  CAS  Google Scholar 

  • Baeuerle PA & Baltimore D (1996) NF-кB: ten years after. Cell 87: 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ & Miska EA (2000) Regulation of gene expression by transcription factor acetylation. Cell. Mol. Life Sci. 57: 1184–1192.

    Article  PubMed  CAS  Google Scholar 

  • Barroga CF, Stevenson JK, Schwarz EM & Verma IM (1995) Constitutive phosphorylation of IкBα by casein kinase II. Proc. Natl. Acad. Sci. USA 92: 7637–7641.

    Article  PubMed  CAS  Google Scholar 

  • Berger SL (1999) Gene activation by histone and factor acetyltransferases. Curr. Opin. Cell Biol. 11: 336–341.

    Article  PubMed  CAS  Google Scholar 

  • Beyaert R, Cuenda A, Vanden Berghe W, Plaisance S, Lee JC, Haegeman G, Cohen P & Fiers W (1996) The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J. 15: 1914–1923.

    PubMed  CAS  Google Scholar 

  • Birbach A, Gold P, Binder BR, Hofer E, de Martin R & Schmid JA (2002) Signaling molecules of the NF-кB pathway shuttle constitutively between cytoplasm and nucleus. J. Biol. Chem. 277: 10842–10851.

    Article  PubMed  CAS  Google Scholar 

  • Bird TA, Schooley K, Dower SK, Hagen H & Virca GD (1997) Activation of nuclear transcription factor NF-кB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J. Biol. Chem. 272: 32606–32612.

    Article  PubMed  CAS  Google Scholar 

  • Bonnard M, Mirtsos C, Suzuki S, Graham K, Huang J, Ng M, Itie A, Wakeham A, Shahinian A, Henzel WJ, Elia AJ, Shillinglaw W, Mak TW, Cao Z & Yeh WC (2000) Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-кB-dependent gene transcription. EMBO J. 19: 4976–4985.

    Article  PubMed  CAS  Google Scholar 

  • Boyes J, Byfield P, Nakatani Y & Ogryzko V (1998) Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396: 594–598.

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti D, Ogryzko V, Kao HY, Nash A, Chen H, Nakatani Y & Evans RM (1999) A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96: 393–403.

    Article  PubMed  CAS  Google Scholar 

  • Chan HM, Krstic-Demonacos M, Smith L, Demonacos C & La Thangue NB (2001) Acetylation control of the retinoblastoma tumour-suppressor protein. Nat. Cell Biol. 3: 667–674.

    Article  PubMed  CAS  Google Scholar 

  • Chen FE, Huang DB, Chen YQ & Ghosh G (1998) Crystal structure of p50/p65 heterodimer of transcription factor NF-кB bound to DNA. Nature 391: 410–413.

    Article  PubMed  CAS  Google Scholar 

  • Chen LF, Fischle W, Verdin E & Greene WC (2001) Duration of nuclear NF-кB action regulated by reversible acetylation. Science 293: 1653–1657.

    Article  CAS  Google Scholar 

  • Chen LF, Mu Y & Greene WC (2002) Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-кB. EMBO J. 21: 6539–6548.

    Article  PubMed  CAS  Google Scholar 

  • Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR & Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855–859.

    Article  PubMed  CAS  Google Scholar 

  • Diehl JA, Tong W, Sun G & Hannink M (1995) Tumor necrosis factor-α-dependent activation of a RelA homodimer in astrocytes. Increased phosphorylation of RelA and MAD-3 precedes activation of RelA. J. Biol. Chem. 270: 2703–2707.

    Article  PubMed  CAS  Google Scholar 

  • Eckner R, Arany Z, Ewen M, Sellers W & Livingston DM (1994) The adenovirus ElA-associated 300-kD protein exhibits properties of a transcriptional coactivator and belongs to an evolutionarily conserved family. Cold Spring Harb. Symp. Quant. Biol. 59: 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Fruman DA & Cantley LC (2002) Phosphoinositide 3-kinase in immunological systems. Semin. Immunol. 14: 7–18.

    Article  PubMed  CAS  Google Scholar 

  • Furia B, Deng L, Wu K, Baylor S, Kehn K, Li H, Donnelly R, Coleman T & Kashanchi F (2002) Enhancement of nuclear factor-кB acetylation by coactivator p300 and HIV-1 Tat proteins. J. Biol. Chem. 277: 4973–4980.

    Article  PubMed  CAS  Google Scholar 

  • Ganchi PA, Sun SC, Greene WC & Ballard DW (1993) A novel NF-кB complex containing p65 homodimers: implications for transcriptional control at the level of subunit dimerization. Mol. Cell. Biol. 13: 7826–7835.

    PubMed  CAS  Google Scholar 

  • Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y & Collins T (1997) CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. USA 94: 2927–2932.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie SK & Wasserman SA (1994) Dorsal, a Drosophila Rel-like protein, is phosphorylated upon activation of the transmembrane protein Toll. Mol. Cell. Biol. 14: 3559–3568.

    PubMed  CAS  Google Scholar 

  • Gu W & Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.

    Article  PubMed  CAS  Google Scholar 

  • Gustin JA, Maehama T, Dixon JE & Donner DB (2001) The PTEN tumor suppressor protein inhibits tumor necrosis factor-induced nuclear factor кB activity. J. Biol. Chem. 276: 27740–27744.

    Article  PubMed  CAS  Google Scholar 

  • Hamamori Y, Sartorelli V, Ogryzko V, Puri PL, Wu HY, Wang JY, Nakatani Y & Kedes L (1999) Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96: 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O & Woodgett JR (2000) Requirement for glycogen synthase kinase-3β in cell survival and NF-кB activation. Nature 406: 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Huxford T, Huang DB, Malek S & Ghosh G (1998) The crystal structure of the IкBα/NF-кB complex reveals mechanisms of NF-кB inactivation. Cell 95: 759–770.

    Article  PubMed  CAS  Google Scholar 

  • Imhof A, Yang XJ, Ogryzko VV, Nakatani Y, Wolffe AP & Ge H (1997) Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. 7: 689–692.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs MD & Harrison SC (1998) Structure of an IкBα/NF-кB complex. Cell 95: 749–758.

    Article  PubMed  CAS  Google Scholar 

  • Johnson C, Van Antwerp D & Hope TJ (1999) An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IкBα. EMBO J. 18: 6682–6693.

    Article  PubMed  CAS  Google Scholar 

  • Kane LP, Shapiro VS, Stokoe D & Weiss A (1999) Induction of NF-кB by the Akt/PKB kinase. Curr. Biol. 9: 601–604.

    Article  PubMed  CAS  Google Scholar 

  • Koul D, Yao Y, Abbruzzese JL, Yung WK & Reddy SA (2001) Tumor suppressor MMAC/PTEN inhibits cytokine-induced NFкB activation without interfering with the IкB degradation pathway. J. Biol. Chem. 276: 11402–11408.

    Article  PubMed  CAS  Google Scholar 

  • Krappmann D, Wulczyn FG & Scheidereit C (1996) Different mechanisms control signal-induced degradation and basal turnover of the NF-кB inhibitor IкBα in vivo. EMBO J. 15: 6716–6726.

    PubMed  CAS  Google Scholar 

  • Kuo MH, Zhou J, Jambeck P, Churchill ME & Allis CD (1998) Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12: 627–639.

    Article  PubMed  CAS  Google Scholar 

  • Leitges M, Sanz L, Martin P, Duran A, Braun U, Garcia JF, Camacho F, Diaz-Meco MT, Rennert PD & Moscat J (2001) Targeted disruption of the zetaPKC gene results in the impairment of the NF-кB pathway. Mol. Cell 8: 771–780.

    Article  PubMed  CAS  Google Scholar 

  • Li CC, Dai RM, Chen E & Longo DL (1994a) Phosphorylation of NF-KBl-p50 is involved in NF-кB activation and stable DNA binding. J. Biol. Chem. 269: 30089–30092.

    PubMed  CAS  Google Scholar 

  • Li CC, Korner M, Ferris DK, Chen E, Dai RM & Longo DL (1994b) NF-кB/Rel family members are physically associated phosphoproteins. Biochem. J. 303: 499–506.

    PubMed  CAS  Google Scholar 

  • Li Q, Lu Q, Hwang JY, Buscher D, Lee K-F, Izpisua-Belmonte JC & Verma IM (1999) The IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev. 13: 1322–1328.

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Estepa G, Memet S, Israel A & Verma IM (2000) Complete lack of NF-кB activity in IKK1 and IKK2 double-deficient mice: additional defect in neurulation. Genes Dev. 14: 1729–1733.

    PubMed  CAS  Google Scholar 

  • Lin R, Beauparlant P, Makris C, Meloche S & Hiscott J (1996) Phosphorylation of IкBα in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Mol. Cell. Biol. 16: 1401–1409.

    PubMed  CAS  Google Scholar 

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD & Berger SL (1999) p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol. 19: 1202–1209.

    PubMed  CAS  Google Scholar 

  • Marmiroli S, Bavelloni A, Faenza I, Sirri A, Ognibene A, Cenni V, Tsukada J, Koyama Y, Ruzzene M, Ferri A, Auron PE, Toker A & Maraldi NM (1998) Phosphatidylinositol 3-kinase is recruited to a specific site in the activated IL-1 receptor I. FEBS Lett. 438: 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A & Kouzarides T (2000) Regulation of E2F1 activity by acetylation. EMBO J. 19: 662–671.

    Article  PubMed  CAS  Google Scholar 

  • Mayo MW, Madrid LV, Westerheide SD, Jones DR, Yuan XJ, Baldwin AS & Whang YE (2002) PTEN blocks tumor necrosis factor-induced NF-кB-dependent transcription by inhibiting the trans-activation potential of the p65 subunit. J. Biol. Chern. 277: 11116–11125.

    Article  CAS  Google Scholar 

  • Mercurio F, Murray BW, Shevchenko A, Bennett BL, Young DB, Li JW, Pascual G, Motiwala A, Zhu H, Mann M & Manning AM (1999) IкB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol. Cell. Biol. 19: 1526–1538.

    PubMed  CAS  Google Scholar 

  • Mosialos G, Hamer P, Capobianco AJ, Laursen RA & Gilmore TD (1991) A protein kinase-A recognition sequence is structurally linked to transformation by p59v-rel and cytoplasmic retention of p68c-rel. Mol. Cell. Biol. 11: 5867–5877.

    PubMed  CAS  Google Scholar 

  • Mosialos G & Gilmore TD (1993) v-Rel and c-Rel are differentially affected by mutations at a consensus protein kinase recognition sequence. Oncogene 8: 721–730.

    PubMed  CAS  Google Scholar 

  • Na SY, Lee SK, Han SJ, Choi HS, Im SY & Lee JW (1998) Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor кB-mediated transactivations. J. Biol. Chem. 273: 10831–10834.

    Article  PubMed  CAS  Google Scholar 

  • Naumann M & Scheidereit C (1994) Activation of NF-кB in vivo is regulated by multiple phosphorylations. EMBO J. 13: 4597–4607.

    PubMed  CAS  Google Scholar 

  • Ng HH, Jeppesen P & Bird A (2000) Active repression of methylated genes by the chromosomal protein MBD1. Mol. Cell. Biol. 20: 1394–1406.

    Article  PubMed  CAS  Google Scholar 

  • Perkins ND, Felzien LK, Berts JC, Leung K, Beach DH & Nabel GJ (1997) Regulation of NF-кB by cyclin-dependent kinases associated with the p300 coactivator. Science 275: 523–527.

    Article  PubMed  CAS  Google Scholar 

  • Reddy SA, Huang JH & Liao WS (1997) Phosphatidylinositol 3-kinase in interleukin 1 signaling. Physical interaction with the interleukin 1 receptor and requirement in NFкB and AP-1 activation. J. Biol. Chem. 272: 29167–29173.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW & Appella E (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12: 2831–2841.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai H, Chiba H, Miyoshi H, Sugita T & Toriumi W (1999) IкB kinases phosphorylate NF-кB p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem. 274: 30353–30356.

    Article  PubMed  CAS  Google Scholar 

  • Sartorelli V, Puri PL, Hamamori Y, Ogryzko V, Chung G, Nakatani Y, Wang JY & Kedes L (1999) Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol. Cell 4: 725–734.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz M, dos Santos Silva M & Baeuerle P (1995) Transactivation domain 2 (TA2) of p65 NF-кB. Similarity to TA1 and phorbol ester-stimulated activity and phosphorylation in intact cells. J. Biol. Chem. 270: 15576–15584.

    Article  PubMed  CAS  Google Scholar 

  • Senftleben U & Karin M (2002) The IKK/NF-кB pathway. Crit. Care Med. 30: S18–S26.

    Article  CAS  Google Scholar 

  • Sheppard KA, Rose DW, Haque ZK, Kurokawa R, Mclnerney E, Westin S, Thanos D, Rosenfeld MG, Glass CK & Collins T (1999) Transcriptional activation by NF-кB requires multiple coactivators. Mol. Cell. Biol. 19: 6367–6378.

    PubMed  CAS  Google Scholar 

  • Sizemore N, Leung S & Stark GR (1999) Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-кB p65/RelA subunit. Mol. Cell. Biol. 19: 4798–4805.

    PubMed  CAS  Google Scholar 

  • Sizemore N, Lerner N, Dombrowski N, Sakurai H & Stark GR (2002) Distinct roles of the IкB kinase α and β subunits in liberating nuclear factor кB (NF-кB) from IкB and in phosphorylating the p65 subunit of NF-кB. J. Biol. Chem. 277: 3863–3869.

    Article  PubMed  CAS  Google Scholar 

  • Sterner DE & Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64: 435–459.

    Article  PubMed  CAS  Google Scholar 

  • Van Patten SM, Fletcher WH & Walsh DA (1986) The inhibitor protein of the cAMP-dependent protein kinase-catalytic subunit interaction. Parameters of complex formation. J. Biol. Chem. 261: 5514–5523.

    PubMed  Google Scholar 

  • Van Patten SM, Hotz A, Kinzel V & Walsh DA (1988) The inhibitor protein of the cyclic AMP-dependent protein kinase-catalytic subunit interaction. Composition of multiple complexes. Biochem. J. 256: 785–789.

    PubMed  Google Scholar 

  • Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W & Haegeman G (1998) p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-кB p65 transactivation mediated by tumor necrosis factor. J. Biol. Chem. 273: 3285–3290.

    Article  Google Scholar 

  • Vanden Berghe W, De Bosscher K, Boone E, Plaisance S & Haegeman G (1999) The nuclear factor-кB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J. Biol. Chem. 274: 32091–32098.

    Article  Google Scholar 

  • Vermeulen L, De Wilde G, Van Damme P, Vanden Berghe W & Haegeman G (2003) Transcriptional activation of the NF-кB p65 subunit by mitogen-and stress-activated protein kinase-1 (MSK1). EMBO J. 22: 1313–1324.

    Article  PubMed  CAS  Google Scholar 

  • Wang D & Baldwin AS (1998) Activation of nuclear factor-кB-dependent transcription by tumor necrosis factor-α is mediated through phosphorylation of RelA/p65 on serine 529. J. Biol. Chem. 273: 29411–29416.

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Westerheide SD, Hanson JL & Baldwin AS (2000) Tumor necrosis factor α-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem. 275: 32592–32597.

    Article  PubMed  CAS  Google Scholar 

  • Werbajh S, Nojek I, Lanz R & Costas MA (2000) RAC-3 is a NF-кB coactivator. FEBS Lett. 485: 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Woodgett JR (2001) Judging a protein by more than its name: GSK-3. Sci. STKE 100: RE12.

    Google Scholar 

  • Wu RC, Qin J, Hashimoto Y, Wong J, Xu J, Tsai SY, Tsai MJ & O’Malley BW (2002) Regulation of SRC-3 (pCIP/ACTR/AIB-l/RAC-3/TRAM-l) coactivator activity by IкB kinase. Mol. Cell. Biol. 22: 3549–3561.

    Article  PubMed  CAS  Google Scholar 

  • Xiao G, Cvijic ME, Fong A, Harhaj EW, Uhlik MT, Waterfield M & Sun SC (2001) Retroviral oncoprotein Tax induces processing of NF-кB2/pl00 in T cells: evidence for the involvement of IKKα. EMBO J. 20: 6805–6815.

    Article  PubMed  CAS  Google Scholar 

  • Yin L, Wu L, Wesche H, Arthur CD, White JM, Goeddel DV & Schreiber RD (2001) Defective lymphotoxin-β receptor-induced NF-кB transcriptional activity in NIK-deficient mice. Science 291: 2162–2165.

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, SuYang H, Erdjument-Bromage H, Tempst P & Ghosh S (1997) The transcriptional activity of NF-кB is regulated by the IкB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89: 413–424.

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Voll RE & Ghosh S (1998) Phosphorylation of NF-кB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1: 661–671.

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, May MS, Jimi E & Ghosh S (2002) The phosphorylation status of nuclear NF-кB determines its association with CBP/p300 or HDAC-1. Mol. Cell 9: 625–636.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

O’Mahony, A., Chen, L.F., Greene, W.C. (2003). New Insights into the Regulation of Nf-кB. In: Beyaert, R. (eds) Nuclear Factor кB. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0163-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0163-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3983-3

  • Online ISBN: 978-94-010-0163-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics