Skip to main content

NF-кB in the Vascular System

  • Chapter
Nuclear Factor кB
  • 126 Accesses

Abstract

From the contributions up to now it should have become very clear that NF-кB plays a central role in diverse aspects of innate and adaptive immune and, more generally, stress-response reactions. In this regard, the vascular wall that represents one of the main barriers in the organism, namely the interface between blood and underlying tissue, is of outstanding importance. The vascular wall consists mainly of endothelial cells (EC) and smooth muscle cells (SMC) and, not unexpectedly, NF-кB has multiple functions in these cells. NF-кB deregulation is not only associated, but in many instances functionally involved in a variety of vascular disorders; it is the purpose of this chapter to discuss some of them in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autieri MV, Yue TL, Ferstein GZ & Ohlstein E (1995) Antisense oligonucleotides to the p65 subunit of NF-кB inhibit human vascular smooth muscle cell adherence and proliferation and prevent neointima formation in rat carotid arteries. Biochem. Biophys. Res. Commun. 213: 827–836.

    Article  PubMed  CAS  Google Scholar 

  • Azevedo LC, Pedro MA, Souza LC, de Souza HP, Janiszewski M, da Luz PL & Laurindo FR (2000) Oxidative stress as a signaling mechanism of the vascular response to injury: the redox hypothesis of restenosis. Cardiovasc. Res. 47: 436–445.

    Article  PubMed  CAS  Google Scholar 

  • Balaram SK, Agrawal DK & Edwards JD (1999) Insulin like growth factor-1 activates nuclear factor-кB and increases transcription of the intercellular adhesion molecule-1 gene in endothelial cells. Cardiovasc. Surg. 7: 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Bellas RE, Lee JS & Sonenshein GE (1995) Expression of a constitutive NF-кB-like activity is essential for proliferation of cultured bovine vascular smooth muscle cells. J. Clin. Invest. 96: 2521–2527.

    Article  PubMed  CAS  Google Scholar 

  • Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, Watson AD & Lusis AJ (1995) Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 91: 2488–2496.

    CAS  Google Scholar 

  • Bierhaus A, Ritz E & Nawroth PP (1996) Expression of receptors for advanced glycation end-products in occlusive vascular and renal disease. Nephrol. Dial. Transplant. 11: 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Bierhaus A, Chevion S, Chevion M, Hofmann M, Quehenberger P, Illmer T, Luther T, Berentshtein E, Tritschler H, Muller M, Wahl P, Ziegler R & Nawroth PP (1997) Advanced glycation end product-induced activation of NF-кB is suppressed by α-lipoic acid in cultured endothelial cells. Diabetes 46: 1481–1490.

    Article  PubMed  CAS  Google Scholar 

  • Birbach A, Gold P, Binder BR, Hofer E, de Martin R & Schmid JA (2002) Signaling molecules of the NF-кB pathway shuttle constitutively between cytoplasm and nucleus. J. Biol. Chem. 277: 10842–10851.

    Article  PubMed  CAS  Google Scholar 

  • Bond M, Chase AJ, Baker AH & Newby AC (2001) Inhibition of transcription factor NF-кB reduces matrix metalloproteinase-1,-3 and-9 production by vascular smooth muscle cells. Cardiovasc. Res. 50: 556–565.

    Article  PubMed  CAS  Google Scholar 

  • Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA & Neumeier D (1996) Activated transcription factor nuclear factor-кB is present in the atherosclerotic lesion. J. Clin. Invest. 97: 1715–1722.

    Article  PubMed  CAS  Google Scholar 

  • Brand K, Eisele T, Kreusel U, Page M, Page S, Haas M, Gerling A, Kaltschmidt C, Neumann FJ, Mackman N, Baeurele PA, Walli AK & Neumeier D (1997) Dysregulation of monocytic nuclear factor-кB by oxidized low-density lipoprotein. Arterioscler. Thromb. Vasc. Biol. 17: 1901–1909.

    Article  PubMed  CAS  Google Scholar 

  • Breuss JM, Cejna M, Bergmeister H, Kadl A, Baumgartl G, Steurer S, Xu Z, Koshelnick Y, Lipp J, De Martin R, Losert U, Lammer J & Binder BR (2002) Activation of nuclear factor-кB significantly contributes to lumen loss in a rabbit iliac artery balloon angioplasty model. Circulation 105: 633–638.

    Article  PubMed  CAS  Google Scholar 

  • Brostjan C, Anrather J, Csizmadia V, Stroka D, Soares M, Bach FH & Winkler H (1996) Glucocorticoid-mediated repression of NFкB activity in endothelial cells does not involve induction of IкBα synthesis. J. Biol. Chem. 271: 19612–19616.

    Article  PubMed  CAS  Google Scholar 

  • Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ & Simonet WS (1998) osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12: 1260–1268.

    Article  PubMed  CAS  Google Scholar 

  • Chinetti G, Fruchart JC & Staels B (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm. Res. 49: 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Collins T (1993) Endothelial nuclear factor-кB and the initiation of the atherosclerotic lesion. Lab. Invest. 68: 499–508.

    PubMed  CAS  Google Scholar 

  • Cooper JT, Stroka DM, Brostjan C, Palmetshofer A, Bach FH & Ferran C (1996) A20 blocks endothelial cell activation through a NF-кB-dependent mechanism. J. Biol. Chem. 271: 18068–18073.

    Article  PubMed  CAS  Google Scholar 

  • Coyne C, Baravick J, Howell T, 3rd, Baravick E, Willetto C & Fenwick BW (2001) Biochemical mechanisms that interact with membrane-associated IL-1 RII (60-kDa decoy) receptors in populations of adherent macrophages and vascular endothelium. Cell. Signal. 13: 765–776.

    Article  PubMed  CAS  Google Scholar 

  • Darnay BG, Haridas V, Ni J, Moore PA & Aggarwal BB (1998) Characterization of the intracellular domain of receptor activator of NF-кB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-кB and c-Jun N-terminal kinase. J. Biol. Chem. 273: 20551–20555.

    Article  PubMed  CAS  Google Scholar 

  • de Martin R, Vanhove B, Cheng Q, Hofer E, Csizmadia V, Winkler H & Bach FH (1993) Cytokine-inducible expression in endothelial cells of an IкBα-like gene is regulated by NF-кB. EMBO J. 12: 2773–2779.

    PubMed  Google Scholar 

  • de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N & Williams LT (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255: 989–991.

    Article  PubMed  Google Scholar 

  • Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, Gonzalez FJ, Fruchart JC, Tedgui A, Haegeman G & Staels B (1999) Peroxisome proliferator-activated receptor α negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-кB and AP-1. J. Biol. Chem. 274: 32048–32054.

    Article  PubMed  CAS  Google Scholar 

  • Delhase M, Hayakawa M, Chen Y & Karin M (1999) Positive and negative regulation of IкB kinase activity through IKKβ subunit phosphorylation. Science 284: 309–313.

    Article  PubMed  CAS  Google Scholar 

  • Desai A, Lankford HA & Warren JS (2001) Homocysteine augments cytokine-induced chemokine expression in human vascular smooth muscle cells: implications for atherogenesis. Inflammation 25: 179–186.

    Article  PubMed  CAS  Google Scholar 

  • Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ & Wahli W (1996) The PPARα-leuko-triene B4 pathway to inflammation control. Nature 384: 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Doherty TM, Uzui H, Fitzpatrick LA, Tripathi PV, Dunstan CR, Asotra K & Rajavashisth TB (2002) Rationale for the role of osteoclast-like cells in arterial calcification. FASEB J. 16: 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Erl W, Hansson GK, de Martin R, Draude G, Weber KS & Weber C (1999) Nuclear factor-кB regulates induction of apoptosis and inhibitor of apoptosis protein-1 expression in vascular smooth muscle cells. Circ. Res. 84: 668–677.

    Article  PubMed  CAS  Google Scholar 

  • Faure E, Thomas L, Xu H, Medvedev A, Equils O & Arditi M (2001) Bacterial lipopolysaccharide and IFN-γ induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-кB activation. J. Immunol. 166: 2018–2024.

    PubMed  CAS  Google Scholar 

  • Ferrara N (2001) Role of vascular endothelial growth factor in regulation of physiological angio-genesis. Am. J. Physiol. Cell. Physiol. 280: C1358–C1366.

    PubMed  CAS  Google Scholar 

  • Flamme I, Frolich T & Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J. Cell. Physiol. 173: 206–210.

    Article  PubMed  CAS  Google Scholar 

  • Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF & Siebenlist U (1997) Requirement for NF-кB in osteoclast and B-cell development. Genes Dev. 11: 3482–3496.

    Article  PubMed  CAS  Google Scholar 

  • Frisch SM & Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124: 619–626.

    Article  PubMed  CAS  Google Scholar 

  • Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T & Cybulsky MI (2000) The NF-кB signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl. Acad. Sci. USA 97: 9052–9057.

    Article  PubMed  CAS  Google Scholar 

  • Han YP, Tuan TL, Wu H, Hughes M & Garner WL (2001) TNF-α stimulates activation of pro-MMP2 in human skin through NF-кB mediated induction of MT1-MMP. J. Cell Sci. 114: 131–139.

    PubMed  CAS  Google Scholar 

  • Heermeier K, Leicht W, Palmetshofer A, Ullrich M, Wanner C & Galle J (2001) Oxidized LDL suppresses NF-кB and overcomes protection from apoptosis in activated endothelial cells. J. Am. Soc. Nephrol. 12: 456–463.

    PubMed  CAS  Google Scholar 

  • Huang S, Robinson JB, Deguzman A, Bucana CD & Fidler IJ (2000) Blockade of nuclear factor-кB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res. 60: 5334–5339.

    PubMed  CAS  Google Scholar 

  • Huang S, Pettaway CA, Uehara H, Bucana CD & Fidler IJ (2001) Blockade of NF-кB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20: 4188–4197.

    Article  PubMed  CAS  Google Scholar 

  • Imbert V, Rupee RA, Livolsi A, Pahl HL, Traenckner EB, Mueller-Dieckmann C, Farahifar D, Rossi B, Auberger P, Baeuerle PA & Peyron JF (1996) Tyrosine phosphorylation of IкB-α activates NF-кB without proteolytic degradation of IкB-α. Cell 86: 787–798.

    Article  PubMed  CAS  Google Scholar 

  • Janabi M, Yamashita S, Hirano K, Sakai N, Hiraoka H, Matsumoto K, Zhang Z, Nozaki S & Matsuzawa Y (2000) Oxidized LDL-induced NF-кB activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients. Arterioscler. Thromb. Vase. Biol. 20: 1953–1960.

    Article  CAS  Google Scholar 

  • Johnson C, Van Antwerp D & Hope TJ (1999) An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IкBα. EMBO J. 18: 6682–6693.

    Article  PubMed  CAS  Google Scholar 

  • Kim H & Koh G (2000) Lipopolysaccharide activates matrix metalloproteinase-2 in endothelial cells through an NF-кB-dependent pathway. Biochem. Biophys. Res. Commun. 269: 401–405.

    Article  PubMed  CAS  Google Scholar 

  • Ko HM, Seo KH, Han SJ, Ann KY, Choi IH, Koh GY, Lee HK, Ra MS & Im SY (2002) Nuclear factor кB dependency of platelet-activating factor-induced angiogenesis. Cancer Res. 62: 1809–1814.

    PubMed  CAS  Google Scholar 

  • Kranzhofer R, Schmidt J, Pfeiffer CA, Hagl S, Libby P & Kubler W (1999) Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19: 1623–1629.

    Article  PubMed  CAS  Google Scholar 

  • Krikos A, Laherty CD & Dixit VM (1992) Transcriptional activation of the tumor necrosis factor α-inducible zinc finger protein, A20, is mediated by кB elements. J. Biol. Chem. 267: 17971–17976.

    PubMed  CAS  Google Scholar 

  • Kroon ME, Koolwijk P, van der Vecht B & van Hinsbergh VW (2001) Hypoxia in combination with FGF-2 induces tube formation by human microvascular endothelial cells in a fibrin matrix: involvement of at least two signal transduction pathways. J. Cell Sci. 114: 825–833.

    PubMed  CAS  Google Scholar 

  • Kukk E, Lymboussaki A, Taira S, Kaipainen A, Jeltsch M, Joukov V & Alitalo K (1996) VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122: 3829–3837.

    PubMed  CAS  Google Scholar 

  • Lan Q, Mercurius KO & Davies PF (1994) Stimulation of transcription factors NF-кB and API in endothelial cells subjected to shear stress. Biochem. Biophys. Res. Commun. 201: 950–956.

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Kypreos KE & Sonenshein GE (1998) Synchronization of cultured vascular smooth muscle cells following reversal of quiescence induced by treatment with the antioxidant N-acetylcysteine. Exp. Cell Res. 239: 447–453.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL & Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97: 1566–1571.

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Van Antwerp D, Mercurio F, Lee KF & Verma IM (1999) Severe liver degeneration in mice lacking the IкB kinase 2 gene. Science 284: 321–325.

    Article  PubMed  CAS  Google Scholar 

  • Liao F, Andalibi A, deBeer FC, Fogelman AM & Lusis AJ (1993) Genetic control of inflammatory gene induction and NF-кB-like transcription factor activation in response to an atherogenic diet in mice. J. Clin. Invest. 91: 2572–2579.

    Article  PubMed  CAS  Google Scholar 

  • Lindner V & Collins T (1996) Expression of NF-кB and IкB-α by aortic endothelium in an arterial injury model. Am. J. Pathol. 148: 427–438.

    PubMed  CAS  Google Scholar 

  • Marx N, Sukhova GK, Collins T, Libby P & Plutzky J (1999) PPARα activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 99: 3125–3131.

    Article  PubMed  CAS  Google Scholar 

  • McGowan NW, Walker EJ, Macpherson H, Ralston SH & Helfrich MH (2001) Cytokine-activated endothelium recruits osteoclast precursors. Endocrinology 142: 1678–1681.

    Article  PubMed  CAS  Google Scholar 

  • Mechtcheriakova D, Schabbauer G, Lucerna M, Clauss M, De Martin R, Binder BR & Hofer E (2001) Specificity, diversity, and convergence in VEGF and TNF-α signaling events leading to tissue factor up-regulation via EGR-1 in endothelial cells. FASEB J. 15: 230–242.

    Article  PubMed  CAS  Google Scholar 

  • Meiners S, Laule M, Rother W, Guenther C, Prauka I, Muschick P, Baumann G, Kloetzel PM & Stangl K (2002) Ubiquitin-proteasome pathway as a new target for the prevention of restenosis. Circulation 105: 483–489.

    Article  PubMed  CAS  Google Scholar 

  • Morigi M, Angioletti S, Imberti B, Donadelli R, Micheletti G, Figliuzzi M, Remuzzi A, Zoja C & Remuzzi G (1998) Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-кB-dependent fashion. J. Clin. Invest. 101: 1905–1915.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Kitajima I, Shin H, Takasaki I, Shigeta K, Abeyama K, Yamashita Y, Tokioka T, Soejima Y & Maruyama I (1994) Involvement of NF-кB activation in thrombin-induced human vascular smooth muscle cell proliferation. Biochem. Biophys. Res. Commun. 204: 950–958.

    Article  PubMed  CAS  Google Scholar 

  • Oitzinger W, Hofer-Warbinek R, Schmid JA, Koshelnick Y, Binder BR & de Martin R (2001) Adenovirus-mediated expression of a mutant IкB kinase 2 inhibits the response of endothelial cells to inflammatory stimuli. Blood 97: 1611–1617.

    Article  PubMed  CAS  Google Scholar 

  • Parhami F, Fang ZT, Fogelman AM, Andalibi A, Territo MC & Berliner JA (1993) Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J. Clin. Invest. 92: 471–478.

    Article  PubMed  CAS  Google Scholar 

  • Pieper GM & Riaz-ul-Haq (1997) Activation of nuclear factor-кB in cultured endothelial cells by increased glucose concentration: prevention by calphostin C. J. Cardiovasc. Pharmacol. 30: 528–532.

    Article  PubMed  CAS  Google Scholar 

  • Pober JS (1988) Cytokine-mediated activation of vascular endothelium. Physiology and pathology. Am. J. Pathol. 133: 426–433.

    PubMed  CAS  Google Scholar 

  • Qiao JH, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang XP, Imes S, Fishbein MC, Clinton SK, Libby P, Lusis AJ & Rajavashisth TB (1997) Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am. J. Pathol. 150: 1687–1699.

    PubMed  CAS  Google Scholar 

  • Quehenberger P, Bierhaus A, Fasching P, Muellner C, Klevesath M, Hong M, Stier G, Sattler M, Schleicher E, Speiser W & Nawroth PP (2000) Endothelin 1 transcription is controlled by nuclear factor-кB in AGE-stimulated cultured endothelial cells. Diabetes 49: 1561–1570.

    Article  PubMed  CAS  Google Scholar 

  • Rival Y, Beneteau N, Taillandier T, Pezet M, Dupont-Passelaigue E, Patoiseau JF, Junquero D, Colpaert FC & Delhon A (2002) PPARα and PPARδ activators inhibit cytokine-induced nuclear translocation of NF-кB and expression of VCAM-1 in EAhy926 endothelial cells. Eur. J. Pharmacol. 435: 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Ronicke V, Risau W & Breier G (1996) Characterization of the endothelium-specific murine vascular endothelial growth factor receptor-2 (Flk-1) promoter. Circ. Res. 79: 277–285.

    Article  PubMed  CAS  Google Scholar 

  • Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M & Santoro MG (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IкB kinase. Nature 403: 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Scatena M, Almeida M, Chaisson ML, Fausto N, Nicosia RF & Giachelli CM (1998) NF-кB mediates αvβ3 integrin-induced endothelial cell survival. J. Cell Biol. 141: 1083–1093.

    Article  PubMed  CAS  Google Scholar 

  • Scatena M & Giachelli C (2002) The αvβ3 integrin, NF-кB, osteoprotegerin endothelial cell survival pathway. Potential role in angiogenesis. Trends Cardiovasc. Med. 12: 83–88.

    CAS  Google Scholar 

  • Scheinman RI, Cogswell PC, Lofquist AK & Baldwin AS (1995a) Role of transcriptional activation of IкBα in mediation of immunosuppression by glucocorticoids. Science 270: 283–286.

    Article  PubMed  CAS  Google Scholar 

  • Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA & Baldwin AS (1995b) Characterization of mechanisms involved in transrepression of NF-кB by activated glucocorticoid receptors. Mol. Cell. Biol. 15: 943–953.

    PubMed  CAS  Google Scholar 

  • Schmid EF, Binder K, Grell M, Scheurich P & Pfizenmaier K (1995) Both tumor necrosis factor receptors, TNFR60 and TNFR80, are involved in signaling endothelial tissue factor expression by juxtacrine tumor necrosis factor α. Blood 86: 1836–1841.

    PubMed  CAS  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML & Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376: 62–66.

    Article  PubMed  CAS  Google Scholar 

  • Shalhoub V, Elliott G, Chiu L, Manoukian R, Kelley M, Hawkins N, Davy E, Shimamoto G, Beck J, Kaufman SA, Van G, Scully S, Qi M, Grisanti M, Dunstan C, Boyle WJ & Lacey DL (2000) Characterization of osteoclast precursors in human blood. Br. J. Haematol. 111: 501–512.

    Article  PubMed  CAS  Google Scholar 

  • Shono T, Ono M, Izumi H, Jimi SI, Matsushima K, Okamoto T, Kohno K & Kuwano M (1996) Involvement of the transcription factor NF-кB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol. Cell. Biol. 16: 4231–4239.

    PubMed  CAS  Google Scholar 

  • Speir E, Yu ZX, Ferrans VJ, Huang ES & Epstein SE (1998) Aspirin attenuates cytomegalovirus infectivity and gene expression mediated by cyclooxygenase-2 in coronary artery smooth muscle cells. Circ. Res. 83: 210–216.

    Article  PubMed  CAS  Google Scholar 

  • Stangl V, Gunther C, Jarrin A, Bramlage P, Moobed M, Staudt A, Baumann G, Stangl K & Felix SB (2001) Homocysteine inhibits TNF-α-induced endothelial adhesion molecule expression and monocyte adhesion via nuclear factor-кB dependent pathway. Biochem. Biophys. Res. Commun. 280: 1093–1100.

    Article  PubMed  CAS  Google Scholar 

  • Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR & Lipp J (1998) Nuclear factor (NF)-кB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor α-induced apoptosis. J. Exp. Med. 188: 211–216.

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Williams-Skipp C & Scheinman RI (2001) Mapping of glucocorticoid receptor DNA binding domain surfaces contributing to transrepression of NF-кB and induction of apoptosis. J. Biol. Chem. 276: 2329–2332.

    Article  PubMed  CAS  Google Scholar 

  • Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D & Bohlen P (1992) Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187: 1579–1586.

    Article  PubMed  CAS  Google Scholar 

  • Toborek M & Hennig B (1998) The role of linoleic acid in endothelial cell gene expression. Relationship to atherosclerosis. Subcell. Biochem. 30: 415–436.

    CAS  Google Scholar 

  • Voisard R, Huber N, Baur R, Susa M, Ickrath O, Both A, Koenig W & Hombach V (2001) Different effects of antisense RelA p65 and NF-кB1 p50 oligonucleotides on the nuclear factor-кB mediated expression of ICAM-1 in human coronary endothelial and smooth muscle cells. BMC Mol. Biol. 2: 7.

    Article  PubMed  CAS  Google Scholar 

  • Wagner AH, Gebauer M, Pollok-Kopp B & Hecker M (2002) Cytokine-inducible CD40 expression in human endothelial cells is mediated by interferon regulatory factor-1. Blood 99: 520–525.

    Article  PubMed  CAS  Google Scholar 

  • Watson KE, Bostrom K, Ravindranath R, Lam T, Norton B & Demer LL (1994) TGF-β1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J. Clin. Invest. 93: 2106–2113.

    Article  PubMed  CAS  Google Scholar 

  • Wautier JL, Wautier MP, Schmidt AM, Anderson GM, Hori O, Zoukourian C, Capron L, Chappey O, Yan SD, Guillausseau P & Stern D (1994) Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications. Proc. Natl. Acad. Sci. USA 91: 7742–7746.

    Article  PubMed  CAS  Google Scholar 

  • Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R, Hori O, Stern D & Schmidt AM (1996) Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J. Clin. Invest. 97: 238–243.

    Article  PubMed  CAS  Google Scholar 

  • Weber KS, Draude G, Erl W, de Martin R & Weber C (1999) Monocyte arrest and transmigration on inflamed endothelium in shear flow is inhibited by adenovirus-mediated gene transfer of IкB-α. Blood 93: 3685–3693.

    PubMed  CAS  Google Scholar 

  • Wei S, Teitelbaum SL, Wang MW & Ross FP (2001) Receptor activator of nuclear factor-кB ligand activates nuclear factor-кB in osteoclast precursors. Endocrinology 142: 1290–1295.

    Article  PubMed  CAS  Google Scholar 

  • Willms-Kretschmer K, Flax MH & Cotran RS (1967) The fine structure of the vascular response in hapten-specific delayed hypersensitivity and contact dermatitis. Lab. Invest. 17: 334–349.

    PubMed  CAS  Google Scholar 

  • Wrighton CJ, Hofer-Warbinek R, Moll T, Eytner R, Bach FH & de Martin R (1996) Inhibition of endothelial cell activation by adenovirus-mediated expression of IкBα, an inhibitor of the transcription factor NF-кB. J. Exp. Med. 183: 1013–1022.

    Article  PubMed  CAS  Google Scholar 

  • Xia P, Vadas MA, Rye KA, Barter PJ & Gamble JR (1999) High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL. J. Biol. Chem. 274: 33143–33147.

    Article  PubMed  CAS  Google Scholar 

  • Yeh M, Leitinger N, de Martin R, Onai N, Matsushima K, Vora DK, Berliner JA & Reddy ST (2001) Increased transcription of IL-8 in endothelial cells is differentially regulated by TNF-α and oxidized phospholipids. Arterioscler. Thromb. Vasc. Biol. 21: 1585–1591.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida A, Yoshida S, Ishibashi T, Kuwano M & Inomata H (1999) Suppression of retinal neovascularization by the NF-кB inhibitor pyrrolidine dithiocarbamate in mice. Invest. Ophthalmol. Vis. Sci. 40: 1624–1629.

    PubMed  CAS  Google Scholar 

  • Yoshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H & Kuwano M (1997) Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor α-dependent angiogenesis. Mol. Cell. Biol. 17: 4015–4023.

    PubMed  CAS  Google Scholar 

  • Zhong H, Voll RE & Ghosh S (1998) Phosphorylation of NF-кB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1: 661–671.

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, May MJ, Jimi E & Ghosh S (2002) The phosphorylation status of nuclear NF-кB determines its association with CBP/p300 or HDAC-1. Mol. Cell 9: 625–636.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Martin, R. (2003). NF-кB in the Vascular System. In: Beyaert, R. (eds) Nuclear Factor кB. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0163-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0163-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3983-3

  • Online ISBN: 978-94-010-0163-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics