Skip to main content

Regulation of NF-кB by Glucocorticoids

  • Chapter
Nuclear Factor кB

Abstract

Inflammation was first described in history by Cornelius Celsus (30 BC–38 AD) as a process that embraces “rubor et tumor cum calore et dolore”, i.e. redness and swelling accompanied by heat and pain. Inflammation is the result of a series of enzymatic processes in the body. Cell membrane damage caused by a cut or scratch, for example, leads to the activation of phospholipases, which mediate the release of arachidonic acid. This metabolite is further processed by cyclooxy-genases and lipoxygenases to produce the fever-causing prostaglandins, thromboxanes and leukotrienes. These fatty acid derivatives have a vasodilatory action, causing a higher blood flow to help attracting inflammatory cytokines and immune cells to the site of inflammation. This explains the accompanying symptoms of redness and swelling in inflamed tissue. The inflammation process is further mediated and controlled by the action of several messenger molecules called cytokines, chemokines and adhesion molecules, including TNF, IL-1, IL-2, IL-6, MCP-1, IL-8, GM-CSF, ICAM-1 and E-selectin (Cato & Wade, 1996; Barnes & Karin, 1997). These cytokines are produced by (and in turn activate) different surrounding cell types, such as fibroblasts, endothelial cells (lining blood vessels), macrophages and neutrophils, white blood cell components traveling through the bloodstream.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbinante-Nissen JM, Simpson LG & Leikauf GD (1995) Corticosteroids increase secretory leukocyte protease inhibitor transcript levels in airway epithelial cells. Am. J. Phys. 268: 601–606.

    Google Scholar 

  • Adcock IM, Newton R & Barnes PJ (1997) NF-кB involvement in IL-1β-induction of GM-CSF and COX-2: inhibition by glucocorticoids does not require I-кB. Biochem. Soc. Trans. 25: 154s.

    CAS  PubMed  Google Scholar 

  • Adcock IM, Nasuhara Y, Stevens DA & Barnes PJ (1999) Ligand-induced differentiation of glucocorticoid receptor (GR) transrepression and transactivation: preferential targetting of NF-кB and lack of I-кB involvement. Br. J. Pharmacol. 127: 1003–1011.

    CAS  PubMed  Google Scholar 

  • Adcock IM & Caramori G (2001) Cross-talk between pro-inflammatory transcription factors and glucocorticoids. Immunol. Cell Biol. 79: 376–384.

    CAS  PubMed  Google Scholar 

  • Amrani Y, Lazaar AL & Panettieri RAJ (1999) Up-regulation of ICAM-1 by cytokines in human tracheal smooth muscle cells involves an NF-кB-dependent signaling pathway that is only partially sensitive to dexamethasone. J. Immunol. 163: 2128–2134.

    CAS  PubMed  Google Scholar 

  • Auphan N, DiDonato JA, Rosette C, Helmberg A & Karin M (1995) Immunosuppression by glucocorticoids: inhibition of NF-кB activity through induction of кB synthesis. Science 270: 286–290.

    CAS  PubMed  Google Scholar 

  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schütz G & Schnibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signalling. Science 289: 2344–2347.

    CAS  PubMed  Google Scholar 

  • Barnes PJ, Greening AP & Crompton GK (1995) Glucocorticoid resistance in asthma. Am. J. Respir. Crit. Care Med. 152: S125–140.

    CAS  PubMed  Google Scholar 

  • Barnes PJ & Adcock IM (1997) NF-кB: a pivotal role in asthma and a new target for therapy. Trends Pharmacol. Sci. 18: 46–50.

    CAS  PubMed  Google Scholar 

  • Barnes PJ & Karin M (1997) Nuclear factor-кB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med 336: 1066–1071.

    CAS  PubMed  Google Scholar 

  • Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin. Sci. Colch. 94: 557–572.

    CAS  PubMed  Google Scholar 

  • Beato M (1989) Gene regulation by steroid hormones. Cell 56: 335–344.

    CAS  PubMed  Google Scholar 

  • Beg AA, Sha WC, Bronson RT, Ghosh S & Baltimore D (1995) Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-кB. Nature 376: 167–170.

    CAS  PubMed  Google Scholar 

  • Beyaert R, Suffys P, Van Roy F & Fiers W (1990) Inhibition by glucocorticoids of tumor necrosis factor-mediated cytotoxicity. Evidence against lipocortin involvement. FEBS Lett. 262: 93–96.

    CAS  PubMed  Google Scholar 

  • Beyaert R (1999) NF-кB as an emerging target in atopy. Emerg. Ther. Targets 3: 213–228.

    CAS  Google Scholar 

  • Boumpas DT, Chrousos GP, Wilder RL, Cupps TR & Balow JE (1993) Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann. Intern. Med. 119: 1198–1208.

    CAS  PubMed  Google Scholar 

  • Brostjan C, Anrather J, Csizmadia V, Stroka D, Soares M, Bach FH & Winkler H (1996) Glucocorti-coid-mediated repression of NFкB activity in endothelial cells does not involve induction of IкBα synthesis. J. Biol. Chem. 271: 19612–19616.

    CAS  PubMed  Google Scholar 

  • Brzozowski AM, Pike ACW, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA & Carlquist M (1998) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389: 753–758.

    Google Scholar 

  • Burke LJ & Baniahmad A (2000) Corepressors. FASEB J. 14: 1876–1888.

    CAS  PubMed  Google Scholar 

  • Caelles C, Gonzalez Sancho JM & Muñoz A (1997) Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dev. 11: 3351–3364.

    CAS  PubMed  Google Scholar 

  • Caldenhoven E, Liden J, Wissink S, van de Stolpe A, Raaijmakers J, Koenderman L, Okret S, Gustafsson JA & van der Saag PT (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiinflammatory action of glucocorticoids. Mol. Endocrinol. 9: 401–412.

    CAS  PubMed  Google Scholar 

  • Cato AC & Wade E (1996) Molecular mechanisms of anti-inflammatory action of glucocorticoids. BioEssays 18: 371–378.

    CAS  PubMed  Google Scholar 

  • Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M & Evans RM (1996) Role of CBP/p300 in nuclear receptor signalling. Nature 383: 99–103.

    CAS  PubMed  Google Scholar 

  • Chaudhary LR & Avioli LV (1996) Regulation of interleukin-8 gene expression by interleukin-1β, osteotropic hormones, and protein kinase inhibitors in normal human bone marrow stromal cells. J. Biol. Chem. 271: 16591–16596.

    CAS  PubMed  Google Scholar 

  • Chen G, Cao P & Goeddel DV (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol. Cell 9: 401–410.

    CAS  PubMed  Google Scholar 

  • Croxtall JD, van Hal PT, Choudhury Q, Gilroy DW & Flower RJ (2002) Different glucocorticoids vary in their genomic and non-genomic mechanism of action in A549 cells. Br. J. Pharmacol. 135: 511–519.

    CAS  PubMed  Google Scholar 

  • De Bosscher K, Schmitz ML, Vanden Berghe W, Plaisance S, Fiers W & Haegeman G (1997) Gluco-corticoid-mediated repression of nuclear factor-кB-dependent transcription involves direct interference with transactivation. Proc. Natl. Acad. Sei. USA 94: 13504–13509.

    CAS  Google Scholar 

  • De Bosscher K, Vanden Berghe W & Haegeman G (2000a) Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: negative interference of activated glucocorticoid receptor with transcription factors. J. Neuroimmunol. 109: 16–22.

    PubMed  Google Scholar 

  • De Bosscher K, Vanden Berghe W, Vermeulen L, Plaisance S, Boone E & Haegeman. G (2000b) Glucocorticoids repress NF-кB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc. Natl. Acad. Sci. USA 97: 3919–3924.

    PubMed  Google Scholar 

  • De Bosscher K, Vanden Berghe W & Haegeman G (2001) Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators. Mol. Endocrinol. 15: 219–227.

    PubMed  Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS & Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 19: 269–301.

    PubMed  Google Scholar 

  • De Vera ME, Taylor BS, Wang Q, Shapiro RA, Billiar TR & Geller DA (1997) Dexamethasone suppresses iNOS gene expression by upregulating I-кBα: and inhibiting NF-кB. Am. J. Physiol. 273: 1290–1296.

    Google Scholar 

  • DeFranco DB & Guerrero J (2000) Nuclear matrix targeting of steroid receptors: specific signal sequences and adaptor proteins. Crit. Rev. Eukaryot. Gene Expr. 10: 39–44.

    CAS  PubMed  Google Scholar 

  • Delany AM, Gabbitas BY & Canalis E (1995) Cortisol downregulates osteoblast α1 (I) procollagen mRNA by transcriptional and posttranscriptional mechanisms. J. Cell. Biochem. 57: 488–494.

    CAS  PubMed  Google Scholar 

  • Distelhorst CW (2002) Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ. 9: 6–19.

    CAS  PubMed  Google Scholar 

  • Doucas V, Tini M, Egan DA & Evans RM (1999) Modulation of CREB binding protein function by the promyelocytiv (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc. Natl. Acad. Sci. USA 96: 2627–2632.

    CAS  PubMed  Google Scholar 

  • Doucas V, Shi Y, Miyamoto S, West A, Verma I & Evans RM (2000) Cytoplasmic catalytic subunit of protein kinase A mediates cross-repression by NF-кB and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 97: 11893–11898.

    CAS  PubMed  Google Scholar 

  • Eggert M, Mows CC, Tripier D, Arnold R, Michel J, Nickel J, Schmidt S, Beato M & Renkawitz R (1995) A fraction enriched in a novel glucocorticoid receptor-interacting protein stimulates receptor-dependent transcription in vitro. J. Biol. Chem. 270: 30755–30759.

    CAS  PubMed  Google Scholar 

  • Falkenstein E, Tillmann HC, Christ M, Feuring M & Wehling M (2000) Multiple actions of steroid hormones. A focus on rapid, nongenomic effects. Pharmacol. Rev. 52: 513–556.

    CAS  PubMed  Google Scholar 

  • Francastel C, Schubeier D, Martin DI & Groudine M (2000) Nuclear compartmentalization and gene activity. Nat. Rev. Mol. Cell Biol. 1: 137–143.

    CAS  PubMed  Google Scholar 

  • Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y & Collins T (1997) CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. USA 94: 2927–2932.

    CAS  PubMed  Google Scholar 

  • Hager GL, Lim CS, Elbi C & Baumann CT (2000) Trafficking of nuclear receptors in living cells. J. Steroid Biochem. Mol. Biol. 74: 249–254.

    CAS  PubMed  Google Scholar 

  • Hall JM, Couse JF & Korach KS (2001) The multifaceted mechanisms of estradiol and estrogen receptor signaling. J. Biol. Chem. 276: 36869–36872.

    CAS  PubMed  Google Scholar 

  • Hall JM, McDonnell DP & Korach KS (2002) Allosteric regulation of estrogen receptor structure, function, and coactivator recruitment by different estrogen response elements. Mol. Endocrinol. 16: 469–486.

    CAS  PubMed  Google Scholar 

  • Heck S, Kullmann M, Gast A, Ponta H, Rahmsdorf HJ, Herrlich P & Cato AC (1994) A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J. 13: 4087–4095.

    CAS  PubMed  Google Scholar 

  • Heck S, Bender K, Kullmann M, Gottlicher M, Herrlich P & Cato AC (1997) IкBα downregulation of NF-кB activity by glucocorticoid receptor. EMBO J. 16: 4698–4707.

    CAS  PubMed  Google Scholar 

  • Helmberg A, Auphan N, Caelles C & Karin M (1995) Glucocorticoid-induced apoptosis of human leukemic cells is caused by the repressive function of the glucocorticoid receptor. EMBO J. 14: 452–460.

    CAS  PubMed  Google Scholar 

  • Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C & Strauss M (1999) NF-кB function in growth control: regulation of cyclin D expression and G0/G1-to-S-phase transition. Mol. Cell. Biol. 19: 2690–2698.

    CAS  PubMed  Google Scholar 

  • Hofmann TG, Hehner SP, Bacher S, Dröge W & Schmitz ML (1998) Various glucocorticoids differ in their ability to induce gene expression, apoptosis and to repress NF-кB-dependent transcription. FEBS Lett. 441: 441–446.

    CAS  PubMed  Google Scholar 

  • Horwitz KB, Jackson TA, Bain DI, Richer JK, Takimoto GK & Tung L (1996) Nuclear receptor coactivators and corepressors. Mol. Endocrinol. 10: 1167–1177.

    CAS  PubMed  Google Scholar 

  • Ito K, Barnes PJ & Adcock IM (2000) Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits IL-1к-induced histone H4 acetylation on Lysines 8 and 12. Mol. Cell. Biol. 20: 6891–6903.

    CAS  PubMed  Google Scholar 

  • Ito K, Jazrawi E, Cosio B, Barnes PJ & Adcock IM (2001) p65-activated histone acetyltransferase activity is repressed by glucocorticoids: mifepristone fails to recruit HDAC2 to the p65-HAT complex. J. Biol. Chem. 276: 30208–30215.

    CAS  PubMed  Google Scholar 

  • Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L & Horwitz KB (1997) The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding co-activator L7/SPA and the corepressors N-CoR or SMRT. Mol. Endocrinol. 11: 693–705.

    CAS  PubMed  Google Scholar 

  • Jehn BM & Osborne BA (1997) Gene regulation associated with apoptosis. Crit. Rev. Eukaryot. Gene Expr. 7: 179–193.

    CAS  PubMed  Google Scholar 

  • Kaltschmidt B, Kaltschmidt C, Hehner SP, Dröge W & Schmitz ML (1999) Repression of NF-кB impairs HeLa cell proliferation by functional interference with cell cycle checkpoint regulators. Oncogene 18: 3213–3225.

    CAS  PubMed  Google Scholar 

  • Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK & Rosenfeld MG (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403–414.

    CAS  PubMed  Google Scholar 

  • Karin M (1998) New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable? Cell 93: 487–490.

    CAS  PubMed  Google Scholar 

  • Kassel O, Sancono A, Krätzschmar J, Kreft B, Stassen M & Cato CB (2001) Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J. 20: 7108–7116.

    CAS  PubMed  Google Scholar 

  • Katzenellenbogen BS & Katzenellenbogen JA (2002) Biomedicine. Defining the “S” in SERMs. Science 295: 2380–2381.

    CAS  PubMed  Google Scholar 

  • Kniyamu HK, Fryer CJ, Horwitz KB & Archer TK (2000) The mouse mammary tumor virus promoter adopts distinct chromatin structures in hulan breast cancer cells with and without glucocorticoid receptor. J. Biol. Chem. 275: 20061–20068.

    Google Scholar 

  • Korzus E, Torchia J, Rose DW, Xu L, Kurokawa R, Mclnerney EM, Mullen TM, Glass CK & Rosenfeld MG (1998) Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279: 703–707.

    CAS  PubMed  Google Scholar 

  • Lasa M, Brook M, Saklatvala J & Clark RA (2001) Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-activated protein kinase p38. Mol. Cell. Biol. 21: 771–780.

    CAS  PubMed  Google Scholar 

  • Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG & Rose DW (1998) Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc. Natl. Acad. Sci. USA 95: 2920–2925.

    CAS  PubMed  Google Scholar 

  • Lawrence T, Gilroy DW, Colville-Nash PR & Willoughby DA (2001) Possible new role for NF-кB in the resolution of inflammation. Nat. Med. 7: 1291–1297.

    CAS  PubMed  Google Scholar 

  • Lefstin JA & Yamamoto KR (1998) Allosteric effects of DNA on transcriptional regulators. Nature 392: 885–888.

    CAS  PubMed  Google Scholar 

  • Lemon B & Tjian T (2000) Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14: 2551–2569.

    CAS  PubMed  Google Scholar 

  • Lemon B, Inouye C, King DS & Tjian R (2001) Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature 414: 924–928.

    CAS  PubMed  Google Scholar 

  • Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L & Liu ZG (2000) Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-кB activation. J. Biol. Chem. 275: 10519–10526.

    CAS  PubMed  Google Scholar 

  • Lezoualc’h F, Sagara Y, Holsboer F & Behl C (1998) High constitutive NF-кB activity mediates resistance to oxidative stress in neuronal cells. J. Neurosci. 18: 3224–3232.

    PubMed  Google Scholar 

  • Liden J, Delaunay F, Rafter I, Gustafsson J & Okret S (1997) A new function for the C-terminal zinc finger of the glucocorticoid receptor. Repression of RelA transactivation. J. Biol. Chem. 272: 21467–21472.

    CAS  PubMed  Google Scholar 

  • Liden J, Rafter I, Truss M, Gustafsson J & Okret S (2000) Glucocorticoid effects on NF-кB binding in the transcription of the ICAM-1 gene. Biochem. Biophys. Res. Commun. 273: 1008–1014.

    CAS  PubMed  Google Scholar 

  • Ma H, Baumann CT, Li H, Strahl BD, Rice R, Jelinek MA, Aswad DW, Allis CD & Stallcup MR (2001) hormone-dependent, CARM1-directed, arginine-speeifie methylation of histone H3 on a steroid-regulated promoter. Curr. Biol. 11: 1981–1985.

    CAS  PubMed  Google Scholar 

  • McEwan IJ, Wright AP & Gustafsson JA (1997) Mechanism of gene expression by the glucocorticoid receptor: role of protein-protein interactions. BioEssays 19: 153–160.

    CAS  PubMed  Google Scholar 

  • McKay LI & Cidlowski JA (1998) Cross-talk between nuclear factor-кB and the steroid hormone receptors: mechanisms of mutual antagonism. Mol. Endocrinol. 12: 45–56.

    CAS  PubMed  Google Scholar 

  • Meyer T, Carlstedt Duke J & Starr DB (1997) A weak TATA box is a prerequisite for glucocorticoid-dependent repression of the osteocalcin gene. J. Biol. Chem. 272: 30709–30714.

    CAS  PubMed  Google Scholar 

  • Moras D & Gronemeyer H (1998) The nuclear receptor ligand-binding domain: structure and function. Curr. Opin. Cell Biol. 10: 384–391.

    CAS  PubMed  Google Scholar 

  • Newton R, Hart LA, Stevens DA, Bergmann M, Donnelly LE, Adcock IM & Barnes PJ (1998) Effect of dexamethasone on interleukin-1β-(IL-1β)-induced nuclear factor-кB (NF-кB) and кB-dependent transcription in epithelial cells. Eur. J. Biochem. 254: 81–89.

    CAS  PubMed  Google Scholar 

  • Nichols M, Rientjes JM & Stewart AF (1998) Different positioning of the ligand-binding domain helix 12 and the F domain of the estrogen receptor accounts for functional differences between agonists and antagonists. EMBO J. 17: 765–773.

    CAS  PubMed  Google Scholar 

  • Nissen RM & Yamamoto KR (2000) The glucocorticoid receptor inhibits NFкB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 14: 2314–2329.

    CAS  PubMed  Google Scholar 

  • Onate SA, Tsai SY, Tsai MJ & O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270: 1354–1357.

    CAS  PubMed  Google Scholar 

  • Oro AE, Hollenberg SM & Evans RM (1988) Transcriptional inhibition by a glucocorticoid receptor-β-galactosidase fusion protein. Cell 55: 1109–1114.

    CAS  PubMed  Google Scholar 

  • Perissi V, Dasen JS, Kurokawa R, Wang ZY, Korzus E, Rose DW, Glass CK & Rosenfeld MG (1999) Factor-specific modulation of CREB-binding protein acetyltransferase activity. Proc. Natl. Acad. Sci. USA 96: 3652–3657.

    CAS  PubMed  Google Scholar 

  • Perkins ND (1997) Achieving transcriptional specificity with NF-кB. Int. J. Biochem. Cell Biol. 29: 1433–1448.

    CAS  PubMed  Google Scholar 

  • Ramdas J & Harmon JM (1998) Glucocorticoid-induced apoptosis and regulation of NF-кB activity in human leukemic T cells. Endocrinology 139: 3813–3821.

    CAS  PubMed  Google Scholar 

  • Ray KP & Searle N (1997) Glucocorticoid inhibition of cytokine-induced E-selectin promoter activation. Biochem. Soc. Trans. 25: 189s.

    CAS  PubMed  Google Scholar 

  • Ray P, Ghosh SK, Zhang DH & Ray A (1997) Repression of interleukin-6 gene expression by 17 β-estradiol: inhibition of the DNA-binding activity of the transcription factors NF-IL6 and NF-кB by the estrogen receptor. FEBS Lett. 409: 79–85.

    CAS  PubMed  Google Scholar 

  • Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, Gass P, Schmid W, Herrlich P, Angel P & Schutz G (1998) DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93: 531–541.

    CAS  PubMed  Google Scholar 

  • Reichardt HM, Tuckermann JP, Göttlicher M, Vujic M, Weih F, Angel P, Herrlich P & Schütz G (2001) Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J. 20: 7168–7173.

    CAS  PubMed  Google Scholar 

  • Resche-Rigon M & Gronemeyer H (1998) Therapeutic potential of selective modulators of nuclear receptor action. Curr. Opin. Chem. Biol. 2: 501–507.

    CAS  PubMed  Google Scholar 

  • Scheinman R, Cogswell PC, Lofquist A & Baldwin AS (1995a) Role of transcriptional activation of IкBα in mediation of immunosuppression by glucocorticoids. Science 270: 283–286.

    CAS  PubMed  Google Scholar 

  • Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA & Baldwin AS (1995b) Characterization of mechanisms involved in transrepression of NF-кB by activated glucocorticoid receptors. Mol. Cell. Biol. 15: 943–953.

    CAS  PubMed  Google Scholar 

  • Schmitz ML, Stelzer G, Altmann H, Meisterernst M & Baeuerle PA (1995) Interaction of the COOH-terminal transactivation domain of p65 NF-кB with TATA-binding protein, transcription factor IIB, and coactivators. J. Biol. Chem. 270: 7219–7226.

    CAS  PubMed  Google Scholar 

  • Shang Y & Brown M (2002) Molecular determinants for the tissue specificity of SERMs. Science 295: 2465–2468.

    CAS  PubMed  Google Scholar 

  • Sheppard K-A, Phelps KM, Williams AJ, Thanos D, Glass CK, Rosenfeld MG, Gerritsen ME & Collins T (1998) Nuclear integration of glucocorticoid receptor and nuclear factor-кB signaling by CREB-binding protein and steroid receptor coactivator-1. J. Biol. Chem. 273: 29291–29294.

    CAS  PubMed  Google Scholar 

  • Sheppard K-A, Rose DW, Haque ZK, Kurokawa R, Mclnemey E, Westin S, Thanos D, Rosenfeld MG, Glass CK & Collins T (1999) Transcriptional activation by NF-кB requires multiple coactivators. Mol. Cell. Biol. 19: 6367–6378.

    CAS  PubMed  Google Scholar 

  • Stenoien DL, Mancini MG, Patel K, Allegretto EA, Smith CL & Mancini MA (2000) Subnuclear trafficking of estrogen receptor α and steroid receptor coactivator-1. Mol. Endocrinol. 15: 518–534.

    Google Scholar 

  • Stewart S & Crabtree GR (2000) Transcription. Regulation of the regulators. Nature 408: 46–47.

    CAS  PubMed  Google Scholar 

  • Swantek JL, Cobb MH & Geppert TD (1997) Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor α (TNF-α) translation: glucocorticoids inhibit TNF-α translation by blocking JNK/SAPK. Mol. Cell. Biol. 17: 6274–6282.

    CAS  PubMed  Google Scholar 

  • Tao Y, Williams-Skipp C & Scheinman RI (2001) Mapping of glucocorticoid receptor DNA binding domain surfaces contributing to transrepression of NF-кB and induction of apoptosis. J. Biol. Chem. 276: 2329–2332.

    CAS  PubMed  Google Scholar 

  • Thiele K, Bierhaus A, Autschbach F, Hofmann M, Stremmel W, Thiele H, Ziegler R & Nawroth PP (1999) Cell specific effects of glucocorticoid treatment on the NF-кBp65/IкBα system in patients with Crohn’s disease. Gut 45: 693–704.

    CAS  PubMed  Google Scholar 

  • Tobler A, Meier R, Seitz M, Dewald B, Baggiolini M & Fey MF (1992) Glucocorticoids down-regulate gene expression of GM-CSF, NAP-1/IL-8, and IL-6, but not of M-CSF in human fibroblasts. Blood 79: 45–51.

    CAS  PubMed  Google Scholar 

  • Unlap MT & Jope RS (1997) Dexamethasone attenuates NF-кB DNA binding activity without inducing IкB levels in rat brain in vivo. Brain Res. Mol. Brain Res. 45: 83–89.

    CAS  PubMed  Google Scholar 

  • Urnov FD & Wolffe AP (2001) A necessary good: nuclear hormone receptors and their chromatin template. Mol. Endocrinol. 15: 1–16.

    CAS  PubMed  Google Scholar 

  • Vanden Berghe W, De Bosscher K, Boone E, Plaisance S & Haegeman G (1999a) The nuclear factor-кB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J. Biol. Chem. 274: 32091–32098.

    Google Scholar 

  • Vanden Berghe W, Francesconi E, De Bosscher K, Resche-Rigon M & Haegeman G (1999b) Dissociated glucocorticoids with anti-inflammatory potential repress interleukin-6 gene expression by a nuclear factor-AcB-dependent mechanism. Mol. Pharmacol. 56: 797–806.

    Google Scholar 

  • Vanden Berghe W, De Bosscher K, Vermeulen L, De Wilde G & Haegeman G (2002) Induction and repression of NF-кB-driven inflammatory genes, in: Recent Advances in Glucocorticoid Receptor Action (Cato A, Schaecke H & Asadullah K, eds), Ernst Schering Research Foundation Workshop, Vol. 40, Springer, Heidelberg, p. 233–278.

    Google Scholar 

  • Wagner BL, Norris JD, Knotts TA, Weigel NL & McDonnell DP (1998) The nuclear corepressors NCoR and SMRT are key regulators of both ligand-and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol. Cell. Biol. 18: 1369–1378.

    CAS  PubMed  Google Scholar 

  • Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J, Tempst P & Zhang Y (2001) Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptors. Science 293: 853–857.

    CAS  PubMed  Google Scholar 

  • Wissink S, van Heerde EC, Schmitz ML, Kalkhoven E, van der Burg B, Baeuerle PA & van der Saag PT (1997) Distinct domains of the RelA NF-кB subunit are required for negative cross-talk and direct interaction with the glucocorticoid receptor. J. Biol. Chem. 272: 22278–22284.

    CAS  PubMed  Google Scholar 

  • Wissink S, van Heerde EC, van der Burg B & van der Saag PT (1998) A dual mechanism mediates repression of NF-кB activity by glucocorticoids. Mol. Endocrinol. 12: 355–363.

    CAS  PubMed  Google Scholar 

  • Wolffe A & Pruss D (1996) Targeting chromatin disruption: transcription regulators that acetylate histones. Cell 84: 817–819.

    CAS  PubMed  Google Scholar 

  • Wolffe AP (1997) Transcriptional control. Sinful repression. Nature 387: 16–17.

    CAS  PubMed  Google Scholar 

  • Wolffe AP, Wong J & Pruss D (1997) Activators and repressors: making use of chromatin to regulate transcription. Genes Cells 2: 291–302.

    CAS  PubMed  Google Scholar 

  • Xu J, Qiu Y, DeMayo FJ, Tsai S, Tsai M & O’Malley BW (1998) Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279: 1922–1925.

    CAS  PubMed  Google Scholar 

  • Xu L, Glass CK & Rosenfeld MG (1999) Coactivator and corepressor complexes in nuclear receptor function. Curr. Opin. Genet. Dev. 9: 140–147.

    CAS  PubMed  Google Scholar 

  • Young JD, Lawrence AJ, MacLean AG, Leung BP, Mclnnes IB, Canas B, Pappin DJC & Stevenson RD (1999) Thymosin β sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nat. Med. 5: 1424–1427.

    CAS  PubMed  Google Scholar 

  • Zhang X, Jeyakumar M, Petukhov S & Bagchi MK (1998) A nuclear receptor corepressor modulates transcriptional activity of antagonist-occupied steroid hormone receptor. Mol. Endocrinol. 12: 513–524.

    CAS  PubMed  Google Scholar 

  • Zhong H, Voll RE & Ghosh S (1998) Phosphorylation of NF-кB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1: 661–671.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Bosscher, K., Vanden Berghe, W., Haegeman, G. (2003). Regulation of NF-кB by Glucocorticoids. In: Beyaert, R. (eds) Nuclear Factor кB. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0163-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0163-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3983-3

  • Online ISBN: 978-94-010-0163-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics