Skip to main content

Si-Ge Quantum Dot Laser: What Can We Learn From III-V Experience?

  • Chapter
Towards the First Silicon Laser

Part of the book series: NATO Science Series ((NAII,volume 93))

  • 474 Accesses

Abstract

Si-Ge system offers a significant extension to traditional Si-based microelectronics. However, applications of the system would be further greatly expanded if it can be used for high-speed optical transmitters and interconnects. A straightforward idea to achieve this goal is to use the device designs, which are already successfully applied for direct- gap semiconductor materials, particularly, to III–V materials. These are diode lasers based on double heterostructures [1] and on heterostructures with reduced dimensionality [3], so called, quantum wells (QWs), quantum wires (QWWs) and quantum dots (QDs). An idea to achieve lasing in indirect gap materials by using double hetrostructure concept was first mentioned by Kroemer in 1963 [2]. In his paper H. Kroemer proposed to use the double heterostructures (DHS) for carrier confinement in the active region of the diode laser and wrote that “laser action should be obtainable in many of the indirect gap semiconductors and improved in the direct gap ones, if it is possible to supply them with a pair of heterojunction injectors”. Attempts to achieve lasing SiGe-Si DHSs and QWs did not result is significant success, however, as also in the case of other types of indirect-gap materials, for example, AlGaAs DHSs with high Al content (x>0.5), or in type-II GaAs-AlAs quantum QWs. A different approach to achieve lasing in semiconductors was first proposed by Basov, Vul and Popov in 1959 [4], who considered unipolar carrier injection. Population inversion between ionised impurities and free carriers was thought as a gain mechanism through impurity ionisation upon application of pulsed electric field. Boundaries of the sample providing the reflection of light were proposed for a laser feedback mechanism. For Si-based optoelectronics such an opportunity is particularly important, because optical transitions in the latter case are linked only to one band and the problem of indirect crystal band structure in silicon is lifted. In 1971 an extension of the unipolar laser approach was proposed by Kazarinov and Suris [5]. The authors proposed to use population inversion between different electron subbands in a specially designed QW superlattice. The laser based on such approach (cascade laser) was realised in 1985 by Faist et al. [6]. The success of the cascade laser is linked, however, to direct-gap III–V materials and not to Si-based systems, in spite of the fact that the hystory of intraband lasing in indirect gap materials (e.g. in p-doped Ge) is quite long [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alferov, Zh.I. and Kazarinov, R.F. (1963) Double Heterostructure Laser, Authors Certificate No 27448, Application No 950840 with a priority from March, 30, 1963.

    Google Scholar 

  2. Kroemer, H. (1963) A proposed class of heterojunction injection lasers, Proc. IEE 51, 1782–1783

    Article  Google Scholar 

  3. Dingle, R and Henry C.H. (1976) Quantum effects in heterostructure lasers, U.S. Patent No. 3982207.

    Google Scholar 

  4. Basov, N.G., Vul B.M., and Popov Yu.M. (1959) Quantum mechanical semiconductor generators and amplifiers of electromagnetic oscillations, JETP 37, 416.

    Google Scholar 

  5. Kazarinov, R.F. and Suris, R.A. (1971) Possibility of the amplification of electromagnetic waves in a semiconductor with superlattice, Fizika i Tekhnika Poluprovodn. 5, 797–800—Sov. Phys.—Semicond. 5, 707-709.

    Google Scholar 

  6. Faist, J, Capasso, F., Sivco, D. L., Hutchinson, A.L., Sirtori, C., Chu, S. N. G. and Cho, A.Y. (1994) Quantum cascade laser: Temperature dependence of the performance characteristics and high T0 operation, Appl. Phys. Lett. 65, 2901–2903.

    Article  ADS  Google Scholar 

  7. see for a review (1991) Optical and Quantum Electron. 23 (2), Special Issue on Far-infrared Semiconductor Lasers.

    Google Scholar 

  8. Bormann, I., Brunner, K., Hackenbuchner, S., Zandler, G., Abstreiter, Schmult, G.S. and Wegscheider, W. (2002) Midinfrared intersubband electroluminescence of Si/SiGe quantum cascade structures Appl. Phys. Lett. 80, 2260–2262.

    Google Scholar 

  9. Diehl, L., Sigg, H., Dehlinger, G., Grützmacher, D., Möller E., Gennser, U., Sagnes, I., Fromherz T., Campidelli, Y., Kermarrec, O., Bensahel, D., and Faist, J. (2002) Intersubband absorption performed on p-type modulation-doped Si0.2Ge0.8/Si quantum wells grown on Si0.5Ge0.5 pseudosubstrate Appl. Phys. Lett. 80, 3274–3276

    Article  ADS  Google Scholar 

  10. Shchukin, V.A., Ledentsov, N.N., and Bimberg, D. (2003) Epitaxial Nanostructures, Springer, Berlin.

    Google Scholar 

  11. Bimberg, D., Grundmann, M., and Ledentsov N.N. (1999) Quantum Dot Heterostructures, Wiley, Chichester.

    Google Scholar 

  12. Soda, H., Iga, K., Kitahara, C., and Suematsu, Y. (1979) GalnAsP-InP surface-emitting injection lasers, Jpn. J. Appl. Phys. 18, 2329–2330.

    Article  ADS  Google Scholar 

  13. Burnham R.D.; Scifres D.R.; Streifer W. (1982) Transverse light emitting electroluminescent devices, US patent No. 4309670, filed: September 13, 1979.

    Google Scholar 

  14. N.N. Ledentsov and V.A. Shchukin(2002) Long wavelength lasers using GaAs-based quantum dots, Proceedings of SPIE Vol. #4732, Photonics and Quantum Computing Technologies for Aerospace Applications IV (Eds. Donkor, E., Hayduk, M.J., Pirich, A.R., Taylor, E.W.) SPIE, 2002, pp. 15–26.

    Google Scholar 

  15. Galli, M., Agio, M., Andreani, L. C., Belotti, M., Guizzetti, G., Marabelli, F., Patrini, M., Bettotti, P., Dal Negro, L., Gaburro, Z., Pavesi, L., Lui, A. and Bellutti, P. (2002) Spectroscopy of photonic bands in macroporous silicon photonic crystals, Phys. Rev. B 65, 113111.

    Article  ADS  Google Scholar 

  16. Krestnikov, I.L., Ledentsov, N.N., Hoffmann, A., Bimberg, D. (2001) Arrays of Two-Dimensional Islands Formed by Submonolayer Insertions: Growth, Properties, Devices (review), phys. stat. sol. (a) 183, 207–233.

    Article  ADS  Google Scholar 

  17. Ledentsov, N.N., Böhrer, J., Beer, ML, Heinrichsdorff, F., Grundmann, M., Bimberg, D., Ivanov, S.V., Meltser, B.Ya., Yassievich, I.N., Faleev, N.N., Kop’ev, P.S., and Alferov, Zh.I. (1995) Radiative states in type-II GaSb/GaAs quantum wells, Phys.Rev. B 52, 14058–14066.

    ADS  Google Scholar 

  18. Makarov, A., Ledentsov, N.N., Tsatsul’nikov, A.F., Cirlin, G.E., Egorov, V.A., Ustinov, V.M. (2003) Studies of optical properties of ultradense arrays of Ge quantum dots in a Si matrix, Semiconductors 37, in print.

    Google Scholar 

  19. Lenchyshyn, L.C., Thewalt, M.L.W., Houghton, D.C., Noel, J.-P., Rowell, N.L., Sturn, J.C. and Xiao, X. (1993) Photoluminescence mechanisms in thin Si1-xGex quantum wells, Phys. Rev. B 47, 16655–16658.

    Article  ADS  Google Scholar 

  20. Dashiel, M.W., Denker, U., Müller, C., Costantini, G., Manzano, C., Kern K., and Schmidt, O.G. (2002) Photoluminescence of ultrasmall Ge quantum dots grown by molecular beam epitaxy at low temperature, Appl. Phys. Lett. 80, 1279–1281 (2002).

    Article  ADS  Google Scholar 

  21. Baier, T., Mantz, U., Thonke, K., Sauer, R., Schäffler, F., and Herzog, H.-J. (1994) Type-II band alignment in Si/Si1-xGex quantum wells from photoluminescence line shifts due to optically induced band-bending effects: Experiment and theory, Phys. Rev. B 50, 15191–15196.

    Article  ADS  Google Scholar 

  22. à la Guillaume, C. B., Debever, J.-M., and Salvan, F. (1969) Radiative Recombination in Highly Excited CdS, Phys. Rev. 177, 567–580

    Article  ADS  Google Scholar 

  23. Fukatsu, S., Sunamura, H., Shiraki, Y., Komiyama, S. (1997) Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot, Appl. Phys. Lett. 71, 258–260

    Article  ADS  Google Scholar 

  24. Cirlin, G.E., Talalaev, V.G., Zakharov, N.D., Egorov, V.A., Werner, P. (2002) Room Temperature Super-linear Power Dependence of Photoluminescence from Defect-Free Si/Ge Quantum Dot Multilayer Structures, phys. stat. sol. (b) 232, R1–R3.

    Article  ADS  Google Scholar 

  25. Ledentsov, N.N. (1996) Ordered arrays of quantum dots, Proceedings of the 23rd International Conference on the Physics of Semiconductors, Berlin, Germany, July 21-26, 1996, Eds.: Scheffler, M. and Zimmermann, R., World Scientific, Singapoure, v. 1, pp. 19–26.

    Google Scholar 

  26. Heitz, R., Ledentsov, N.N., Bimberg, D., Egorov, A.Yu., Maximov, M.V., Ustinov, V.M., Zhukov, A.E., Alferov, Zh.I., Cirlin, G.E., Soshnikov, I.P., Zakharov, N.D., Werner, P., and Gösele, U. (1999) Optical properties of InAs quantum dots in a Si matrix, Appl. Phys. Lett. 74, 1701–1703.

    Article  ADS  Google Scholar 

  27. Phaneuf, R. J., and Williams, E. D. (1987) Surface phase separation of vicinal Si(111), Phys. Rev. Lett. 58, 2563–2566

    Article  ADS  Google Scholar 

  28. Phaneuf, R. J., Bartelt, N. C., Williams, Ellen D., Swiech, W., and Bauer, E. (1993) Crossover from metastable to unstable facet growth on Si(111) Phys. Rev. Lett. 71, 2284–2287.

    Article  ADS  Google Scholar 

  29. Shchukin, V.A., Borovkov, A. I., Ledentsov, N.N. and Kop’ev, P.S. (1995) Theory of quantum wire formation on corrugated surfaces, Phys. Rev. B 51, 17767–17779.

    Article  ADS  Google Scholar 

  30. Nötzel, R., Ledentsov, N.N., Däweritz, L., Hohenstein, M. and Ploog, K. (1991) Direct synthesis of corrugated superlattices on non-(100)-oriented surfaces, Phys.Rev.Lett. 67, 3812–3815.

    Article  ADS  Google Scholar 

  31. Lüerßen, D., Dinger, A., Kalt, H., Braun, W., Nötzel, R., Ploog, K., Tümmler, J. and Geurts, J. (1998) Interface structure of (001) and (113)A GaAs/AlAs superlattices, Phys. Rev. B 57, 1631–1636.

    Article  ADS  Google Scholar 

  32. Ledentsov, N.N., Litvinov, D., Rosenauer, A., Gerthsen, D., Soshnikov, I. P., Shchukin, V.A., Ustinov, V.M., Egorov, A.Yu., Zukov, A.E., Volodin, V.A., Efremov, M.D., Preobrazhenskii, V.V., Semyagin, B.P., Bimberg, D and Alferov, Zh.I. (2001) Interface structure and growth mode of quantum wire and quantum dot GaAs-AlAs structures on corrugated (311)A surface J. Electr. Mat. 30, 463–470.

    Article  ADS  Google Scholar 

  33. Ledentsov, N. N., Litvinov, D., Gerthsen, D., Ljubas, G.A., Bolotov, V.V., Semyagin, B.R., Shchukin, V.A., Soshnikov, I.P., Ustinov, V.M. and Bimberg, D. (2002) Quantum wires and quantum dots on corrugated (311) surfaces: potential applications in optoelectronics, in: Proceedings of SPIE “Quantum Dot Devices and Computing”, Eds.: Lott, J.A., Ledentsov, N.N., Malloy, K.J., Kane, B.E., Sigmon, T.W., 21 January, 2002 San Jose, USA, Vol. 4656, SPIE, pp. 33–42.

    Google Scholar 

  34. Litvinov, et al.. (2002) „Ordered arrays of vertically-correlated GaAs and AlAs quantum wires grown on a GaAs (311)A surface” Appl. Phys. Lett. 81, 1080–1082.

    Article  ADS  Google Scholar 

  35. Ledentsov, et al. (1996) Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth, Phys. Rev. B 54, 8743–8750.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ledentsov, N.N. (2003). Si-Ge Quantum Dot Laser: What Can We Learn From III-V Experience?. In: Pavesi, L., Gaponenko, S., Dal Negro, L. (eds) Towards the First Silicon Laser. NATO Science Series, vol 93. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0149-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0149-6_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1194-8

  • Online ISBN: 978-94-010-0149-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics