Towards the First Silicon Laser

  • Lorenzo Pavesi
  • Sergey Gaponenko
  • Luca Dal Negro

Part of the NATO Science Series book series (NAII, volume 93)

Table of contents

  1. Front Matter
    Pages i-xiv
  2. Light emitting diodes

    1. Martin A. Green, Jianhua Zhao, Aihua Wang, Thorsten Trupke
      Pages 1-10
    2. M. A. Lourenço, M. S. A. Siddiqui, G. Shao, R. M. Gwilliam, K. P. Homewood
      Pages 11-20
    3. O. B. Gusev, M. S. Bresler, I. N. Yassievich, B. P. Zakharchenya
      Pages 21-28
    4. A. Irrera, D. Pacifici, M. Miritello, G. Franzò, F. Priolo, F. Iacona et al.
      Pages 29-43
    5. B. Garrido, O. GonzÁlez, S. Cheylan, M. LÓpez, A. PÉrez-Rodríguez, C. García et al.
      Pages 45-54
    6. L. Heikkilä, R. Punkkinen, H.-P. Hedman
      Pages 55-60
    7. W. Skorupa, L. Rebohle, T. Gebel, M. Helm
      Pages 69-78
    8. G. E. Cirlin, V. G. Talalaev, N. D. Zakharov, P. Werner
      Pages 79-88
  3. Silicon nanocrystals

    1. Jan Valenta, Jan Linnros, Robert Juhasz, Frank Cichos, JÖrg Martin
      Pages 89-108
    2. Yoshihiko Kanemitsu
      Pages 109-122
    3. D. Kovalev, J. Diener
      Pages 123-130
    4. M. Zacharias, J. Heitmann, L. X. Yi, E. Wildanger, R. Scholz
      Pages 131-138
    5. M. Miu, A. Angelescu, I. Kleps, M. Simion, A. Bragaru
      Pages 139-144
  4. Optical gain in silicon nanocrystals

    1. L. Dal Negro, M. Cazzanelli, Z. Gaburro, P. Bettotti, L. Pavesi, F. Priolo et al.
      Pages 145-164
    2. L. Khriachtchev, M. Räsänen
      Pages 181-190
    3. M. Ivanda, U. V. Desnica, C. W. White, W. Kiefer
      Pages 191-196
    4. Philippe M. Fauchet, Jinhao Ruan
      Pages 197-208

About this book

Introduction

Silicon, the leading material in microelectronics during the last four decades, also promises to be the key material in the future. Despite many claims that silicon technology has reached fundamental limits, the performance of silicon microelectronics continues to improve steadily. The same holds for almost all the applications for which Si was considered to be unsuitable. The main exception to this positive trend is the silicon laser, which has not been demonstrated to date. The main reason for this comes from a fundamental limitation related to the indirect nature of the Si band-gap. In the recent past, many different approaches have been taken to achieve this goal: dislocated silicon, extremely pure silicon, silicon nanocrystals, porous silicon, Er doped Si-Ge, SiGe alloys and multiquantum wells, SiGe quantum dots, SiGe quantum cascade structures, shallow impurity centers in silicon and Er doped silicon. All of these are abundantly illustrated in the present book.

Keywords

LED Laser Transistor alloy crystal modeling nanoparticle photonics quantum dot spectroscopy

Editors and affiliations

  • Lorenzo Pavesi
    • 1
  • Sergey Gaponenko
    • 2
  • Luca Dal Negro
    • 1
  1. 1.INFM and Department of PhysicsUniversity of TrentoItaly
  2. 2.National Academy of Sciences of BelarusMinskBelarus

Bibliographic information

  • DOI https://doi.org/10.1007/978-94-010-0149-6
  • Copyright Information Kluwer Academic Publishers 2003
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4020-1194-8
  • Online ISBN 978-94-010-0149-6
  • Series Print ISSN 1568-2609
  • About this book
Industry Sectors
Electronics
Chemical Manufacturing
Aerospace
Oil, Gas & Geosciences