Skip to main content

Stimulated Emission In Silicon Nanocrystals Gain Measurement And Rate Equation Modelling

  • Chapter
Towards the First Silicon Laser

Part of the book series: NATO Science Series ((NAII,volume 93))

Abstract

Silicon is the electronic material per excellence. Integration and economy of scale are the two keys ingredients for the silicon technological success. Silicon has a band-gap of 1.12 eV, which is ideal for room temperature operation, and an oxide (SiO2), which allows the processing flexibility to place today more than 108 devices on a single chip. The continuous improvements of silicon technology have made possible to grow routinely 200 mm single silicon crystals at low cost, and even larger crystals are now under development. The high integration levels reached by the silicon microelectronic industry have permitted high-speed device performances and unprecedented interconnection levels [1]. However, today the required interconnections between devices are sufficient to cause critical propagation delays, over heating and information latency. To overcome this interconnection bottleneck is together the main motivation and opportunity for silicon Microphotonics, where attempts to combine photonics and electronic components on a single Si chip or wafer are strongly pursued. In addition, photonics aims to combine the power of silicon microelectronics with the advantages of photonics. In this way it is expected that the continuous increase of chip performances predicted by Moore’s law can be ultimately faced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International Technology Roadmap for Semiconductors, Interconnect (http://public.itrs.net.). 2000 Update.

  2. Soref R. A., Proc. of IEEE vol. 81, p. 1687 (1993).

    Article  Google Scholar 

  3. Kimerling L. C., Appl. Surf. Science, 159-160, 8–13 (2000).

    Article  ADS  Google Scholar 

  4. Bisi O., Campisano S. U., Pavesi L., and Priolo F., Silicon based microphotonics: from basics to applications (Amsterdam: IOS press) (1999).

    Google Scholar 

  5. Masini G., Colace L., and Assanto G., Mat. Science Eng. B89, 2–9 (2002).

    Article  Google Scholar 

  6. Irace A., Coppola G., Breglio G., and Cutulo A., IEEE J. Sci. Top. Quantum Elect. 6, 14 (2000).

    Article  Google Scholar 

  7. Li B., Jiang Z., Zhang X., Wang X., Wan J., Li G., and Liu E., Appl. Phys. Lett. 74, 2108 (1999).

    Article  ADS  Google Scholar 

  8. Csutak S. M., Schaub J. D., Wu W. E., and Campbell J. C., IEEE Photon. Technol. Lett. 14, 516 (2002).

    Article  ADS  Google Scholar 

  9. Winnerl S., Buca D., Lenk S., Buchai Ch., Mantl S., and Xu D.-X., Mat. Science Eng. B89, 73–76 (2002).

    Article  Google Scholar 

  10. Gelloz B., and Koshida N., J. Appl. Phys. 88, 4319 (2000).

    Article  ADS  Google Scholar 

  11. Green M. A., Zhao J., Wang A., Reece P. J., and Gal M., Nature 412, 805 (2001).

    Article  ADS  Google Scholar 

  12. Pavesi L., Dal Negro L., Mazzoleni C., Franzò G., and Priolo F., Nature 408, 440 (2000).

    Article  ADS  Google Scholar 

  13. Khriachtchev L., Rasanen M., Novikov S., and Sinkkonen J., Appl. Phys.Lett. 79, 1249 (2001).

    Article  ADS  Google Scholar 

  14. Nayfeh M. H., Rao S., and Barry N., Appl.Phys.Lett. 80, 121 (2002).

    Article  ADS  Google Scholar 

  15. Nayfeh M. H., Barry N., Themen J., Akcakir O., Gratton E., and Belomoin G., Appl. Phys. Lett. 78, 1131 (2001).

    Article  ADS  Google Scholar 

  16. Luterová K., Pelant I., Mikulskas I., Tomasiunas R., Muller D., Grob J., Rehspringer J. L., and Hönerlage B., Appl. Phys. Lett. 91, 2896 (2002).

    Google Scholar 

  17. Svelto O., and Hanna D. C., “Principles of Lasers”, Plenum Press (1998).

    Google Scholar 

  18. Svelto O., Taccheo S., and Svelto C., Optics Communications 149, 277 (1998).

    Article  ADS  Google Scholar 

  19. Dal Negro L., Cazzanelli M., Daldosso N., Gaburro Z., Pavesi L., Priolo F., Pacifici D., Franzò G., and Iacona F., Physica E (2003).

    Google Scholar 

  20. Milloni P. W., and Eberly J. H., “Lasers”, John Wiley & sons, New York (1988).

    Google Scholar 

  21. Shaklee K. L., Nahaory R. E., and Leheny R. F., J. Lumin. 7, 284 (1973).

    Article  Google Scholar 

  22. Dal Negro L., Pacifici D., Bettotti P., Gaburro Z., Cazzanelli M., and Pavesi L., submitted to Appl. Phys. Lett. (2002).

    Google Scholar 

  23. Valenta J., Pelant I., Linnros J., Appl. Phys. Lett. 81, 1396 (2002).

    Article  ADS  Google Scholar 

  24. Mogensen P. C., Smowton P. M., and Blood P., Appl.Phys.Lett. 71, 1975, (1997).

    Article  ADS  Google Scholar 

  25. Smowton P. M., Herrmann E., Ning Y. et al., Appl.Phys.Lett. 78, 2629, (2001).

    Article  ADS  Google Scholar 

  26. Priolo F., Franzò G., and Spinella C., J. Appl. Phys. 87, 1295 (2000).

    Article  ADS  Google Scholar 

  27. Daldosso N. et al., Physica E (2003) in press, M. Luppi, S. Ossicini, phys. stat. sol. (a) (2003) in press.

    Google Scholar 

  28. Filonov A. B., Ossicini S., Bassani F., and Arnaud d’Avitaya F., Phys. Rev. B 65, 195717 (2002).

    Article  ADS  Google Scholar 

  29. Wolkin M. V., Jorne J., Fauchet P. M., Allan G., and Delerue C., Phys. Rev. Lett. 82, 197 (1999).

    Article  ADS  Google Scholar 

  30. Zhou F., and Head J. D., J. Phys. Chem. B 104, 9981 (2000).

    Article  Google Scholar 

  31. Baierle R. J., Caldas M. J., Molinari E., and Ossicini S., Solid State Communications 102, 545 (1997).

    Article  ADS  Google Scholar 

  32. Puzder A., Williamson A. J., Grossman J. C., and Galli G., Phys. Rev. Lett. 88, 97401 (2002).

    Article  ADS  Google Scholar 

  33. Kobitski A. Yu, Zhuravlev K. S., Wagner H. P., and Zahn D. R. T., Phys. Rev. B. 63, 115423 (2001).

    Article  ADS  Google Scholar 

  34. Kanemitsu Y., Ogawa T., Shiraishi K., Takeda K., Phys. Rev. B. 48, 4884 (1993).

    ADS  Google Scholar 

  35. Klimov V. I., Schwarz Ch. J., McBranch D. W., White C. W., Appl. Phys. Lett. 73, 18, 2603 (1998).

    Article  ADS  Google Scholar 

  36. Pavesi L. Dal Negro L., Cazzanelli M., Pucker G., Gaburro Z., Prakash G., Franzò G., Priolo F., Proceedings of SPlE, vol 4293, 162 (2001).

    Article  ADS  Google Scholar 

  37. Linros J., Galeckas A., Lalic N., Grivickas V., Thin Solid Films 297, 167 (1997).

    Article  ADS  Google Scholar 

  38. Dumke W P, Phys. Rev. 127, 1559 (1962).

    Article  ADS  Google Scholar 

  39. Ng W.L., Lourenço M. A., Gwilliam R. M., Ledain S., Shao G., and Homewood KP, Nature 410, 192 (2001).

    Article  ADS  Google Scholar 

  40. Soref R. A., Friedman L., and Sun G., Superlattices and Microelectronics 23, 427 (1998).

    Article  ADS  Google Scholar 

  41. Dehlinger G., Diehl L., Gennser U., Sigg H., Faist J., Ensslin K., Grützmacher D., and Müller E. Science 290, 2277 (2000).

    Article  Google Scholar 

  42. Dehlinger I., Brunner K., Hackenbuchner S., Zandler G., Abstreiter G., Schmult S., and Wegscheider W., Appl Phys Lett 80, 2260 (2002).

    Article  ADS  Google Scholar 

  43. Lynch S. A., Dhillon S. S., Bates R., Paul D. J., Arnone D. D., Robbins D. J., Ikonic Z., Kelsall R. W., Harrison P., Norris D. J., Cullis A. G., Pidgeon C. R., Murzyn P., and Loudon A., Mat. Science Engin. B89, 10–12 (2002).

    Article  Google Scholar 

  44. Pavlov S. G., Hübers H. W., Rummeli M. H., Zhukavin R. Kh., Orlava E. E., Shastin V. N., and Riemann H., Appl Phys Lett 80, 4717 (2002).

    Article  ADS  Google Scholar 

  45. Franzò G., Iacona F., Vinciguerra V., and Priolo F., Mat. Science Eng. B 69/70, 338 (1999).

    Google Scholar 

  46. Coffa S., Libertino S., Coppola G., and Cutolo A., IEEE J. Quant. Electr. 36, 1206 (2000).

    Article  ADS  Google Scholar 

  47. Han H.-S., Seo S.-Y., and Shin Y.-H., Appl. Phys. Lett. 79. 4568 (2001).

    Article  ADS  Google Scholar 

  48. Daldosso N., PHD Thesis, Université J. Fourier, Grenoble, France (2001).

    Google Scholar 

  49. Pavesi L., La Riv. Nuovo Cimento 20, 1–76 (1997).

    Article  Google Scholar 

  50. Iacona F., Franzò G., Moreira E. C., Priolo F., J. Appl. Phys. 89, 8354 (2001).

    Article  ADS  Google Scholar 

  51. Franzò G., Irrera A., Moreira E. C., Miritello M., Icona F., Sanfilippo D., Di Stefano G. F., Fallica F., Priolo F., Appl. Phys. A74, 1 (2002).

    ADS  Google Scholar 

  52. Lin C.-F., Chung P.-F., and Miin-Jang Chen Wei-Fang Su, Optics Lett. 27, 713 (2002).

    Article  ADS  Google Scholar 

  53. Heikkilä L., Küüsela T., and Hedman H. P., Superl. Microstructures 26, 157 (1999).

    Article  ADS  Google Scholar 

  54. Borkar S. Y., and Paniccia M., Intel Developer UPDATE Magazine 31, April 11 (2002).

    Google Scholar 

  55. V.I. Klimov et al., Science 290, 314, (2000)

    Article  ADS  Google Scholar 

  56. A.V. Malko et al., Appl. Phys. Lett. 81, 1303, (2002)

    Article  ADS  Google Scholar 

  57. Delerue C., Lanoo M., Allan G., Martin E., Mihalcescu I., Vial J. C., Romenstain R., Muller F., Bsiesy A., Phys. Rev. Lett. 75, 2228 (1995).

    Article  ADS  Google Scholar 

  58. M’ghaïeth R., Maâref H., Mihalcescu I., Vial J. C., Phys. Rev. B. 60, 4450 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dal Negro, L. et al. (2003). Stimulated Emission In Silicon Nanocrystals Gain Measurement And Rate Equation Modelling. In: Pavesi, L., Gaponenko, S., Dal Negro, L. (eds) Towards the First Silicon Laser. NATO Science Series, vol 93. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0149-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0149-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1194-8

  • Online ISBN: 978-94-010-0149-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics