Skip to main content

Titin as a modular spring: emerging mechanisms for elasticity control by titin in cardiac physiology and pathophysiology

  • Chapter
Mechanics of Elastic Biomolecules

Abstract

Titin is a giant elastic protein that functions as a molecular spring that develops passive muscle stiffness. Here we discuss the molecular basis of titin’s extensibility, how titin’s contribution to passive muscle stiffness may be adjusted and how adjustment of titin’s stiffness may influence muscle contraction. We also focus on ligands that link titin to membrane channel activity, protein turnover and gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, etal. (2001) The complete gene sequence of titin, expression of an unusual ∼700 kDa titin isoform and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89: 1065–1072.

    Article  PubMed  CAS  Google Scholar 

  • Bustamante C, Marko JF, Siggia ED and Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265: 1599–1600.

    Article  PubMed  CAS  Google Scholar 

  • Carrion-Vazquez M, Marszalek PE, Oberhauser AF and Fernandez JM (1999a) Atomic force microscopy captures length phenotypes in single proteins. Proc Natl Acad Sci USA 96: 11288–11292.

    Article  PubMed  CAS  Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H and Fernandez JM (2000) Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog Biophys Mol Biol 74: 63–91.

    Article  PubMed  CAS  Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J and Fernandez JM (1999b) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci USA 96: 3694–3699.

    Article  PubMed  CAS  Google Scholar 

  • Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, Trombitas K, Labeit S and Granzier H (2000) Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86: 59–67.

    Article  PubMed  CAS  Google Scholar 

  • Cazorla O, Wu Y, Irving TC and Granzier H (2001) Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 88: 1028–1035.

    Article  PubMed  CAS  Google Scholar 

  • Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, et al. (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 306: 717–726.

    Article  PubMed  CAS  Google Scholar 

  • Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, et al. (2000) Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86: 1114–1121.

    Article  PubMed  CAS  Google Scholar 

  • Friederich E, Vancompernolle K, Huet C, Goethals M, Finidori J, Vandekerckhove J and Louvard D (1992) An actin-binding site containing a conserved motif of charged amino acid residues is essential for the morphogenic effect of villin. Cell 70: 81–92.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda N, Sasaki D, Ishiwata S and Kurihara S (2001) Length dependence of tension generation in rat skinned cardiac muscle: role of titin in the Frank-Starling mechanism of the heart. Circulation 104: 1639–1645.

    Article  PubMed  CAS  Google Scholar 

  • Fulgenzi G, Graciotti L, Granata AL, Corsi A, Fucini P, Noegel AA, Kent HM and Stewart M (1998) Location of the binding site of the mannose-specific lectin comitin on F-actin. J Mol Biol 284: 1255–1263.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Ono Y, Tsuchiya H, Katayama Y, Bang ML, Labeit D, Labeit S, Inagaki N and Gregorio CC (2001) Specific Interaction of a minK Channel Subunit with the Sarcomeric Protein T-cap Suggests a T-Tubule — Myofibril Z-line Linking System. J Mol Biol 213: 775–784.

    Article  Google Scholar 

  • Gerull B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S, Seidman JG, Seidman C, Granzier H, Labeit S, et al. (2002) Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 30: 201–204.

    Article  PubMed  CAS  Google Scholar 

  • Granzier H and Labeit S (2002) Cardiac titin: an adjustable multifunction spring. J Physiol (Lond) 541: 335–342.

    Article  CAS  Google Scholar 

  • Granzier H, Helmes M, Cazorla O, McNabb M, Labeit D, Wu Y, Yamasaki R, Redkar A, Kellermayer M, Labeit S, et al. (2000) Mechanical properties of titin isoforms. Adv Exp Med Biol 481: 283–300.

    Article  PubMed  CAS  Google Scholar 

  • Greaser M (2001) Identification of new repeating motifs in titin. Proteins 43: 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Gregorio CC, Granzier H, Sorimachi H and Labeit S (1999) Muscle assembly: a titanic achievement? Curr Opin Cell Biol 11: 18–25.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Cruz G, Van Heerden AH and Wang K (2000) Modular motif, structural folds and affinity profiles of PEVK segment of human fetal skeletal muscle titin. J Biol Chem 216: 7442–7449.

    Google Scholar 

  • Hartzeil HC and Glass DB (1984) Phosphorylation of purified cardiac muscle C-protein by purified cAMP-dependent and endogenous Ca2+-calmodulin-dependent protein kinases. J Biol Chem 259: 15587–15596.

    Google Scholar 

  • Hein S and Schaper J (1996) Pathogenesis of dilated cardiomyopathy and heart failure: insights from cell morphology and biology. Curr Opin Cardiol 11: 293–301.

    Article  PubMed  CAS  Google Scholar 

  • Hein S, Scholz D, Fujitani N, Rennollet H, Brand T, Friedl A and Schaper J (1994) Altered expression of titin and contractile proteins in failing human myocardium. J Mol Cell Cardiol 26: 1291–1306.

    Article  PubMed  CAS  Google Scholar 

  • Helmes M, Trombitas K, Centner T, Kellermayer M, Labeit S, Linke A and Granzier H (1999) Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring. Circ Res 84: 1139–1352.

    Article  Google Scholar 

  • Helmes M, Trombitas K and Granzier H (1996) Titin develops restoring force in rat cardiac myocytes. Circ Res 79: 619–626.

    Article  PubMed  CAS  Google Scholar 

  • Horowits R and Podolsky RJ (1987) The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol 105: 2217–2223.

    Article  PubMed  CAS  Google Scholar 

  • Improta S, Politou AS and Pastore A (1996) Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure 4: 323–337.

    Article  PubMed  CAS  Google Scholar 

  • Itoh-Satoh M, Hayashi T, Nishi H, Koga Y, Arimura T, Koyanagi T, Takahashi M, Hohda S, Ueda K, Nouchi T, et al. (2002) Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 291: 385–393.

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF and Holmes KC (1990) Atomic structure of the actin: DNase I complex. Nature 347: 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MS, Smith SB, Granzier HL and Bustamante C (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276: 1112–1116.

    Article  PubMed  CAS  Google Scholar 

  • Kulke M, Fujita-Becker S, Rostkova E, Neagoe C, Labeit D, Manstein DJ, Gautel M and Linke WA (2001) Interaction between PEVK-titin and actin filaments: origin of a viscous force component in cardiac myofibrils. Circ Res 89: 874–881.

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MS, Smith SB, Bustamante C and Granzier HL (1998) Complete unfolding of the titin molecule under external force. J Struct Biol 122: 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MS, Smith S, Bustamante C and Granzier HL (2000) Mechanical manipulation of single titin molecules with laser tweezers. Adv Exp Med Biol 481: 111–126; discussion 127–128.

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MS, Smith SB, Bustamante C and Granzier HL (2001) Mechanical fatigue in repetitively stretched single molecules of titin. Biophys J 80: 852–863.

    Article  PubMed  CAS  Google Scholar 

  • Labeit S and Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270: 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Oberhauser AF, Redick SD, Carrion-Vazquez M, Erickson HP and Fernandez JM (2001) Multiple conformations of PEVK proteins detected by single-molecule techniques. Proc Natl Acad Sci USA 98: 10682–10686.

    Article  PubMed  CAS  Google Scholar 

  • Linke W, Rudy D, Centner T, Gautel M, Witt C, Labeit S and Gregorio C (1999) I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament strucuture. J Cell Biol 146: 631–644.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA (2000) Stretching molecular springs: elasticity of titin filaments in vertebrate striated muscle. Histol Histopathol 15: 799–811.

    PubMed  CAS  Google Scholar 

  • Linke WA and Granzier H (1998) A spring tale: new facts on titin elasticity. Biophys J 75: 2613–2614.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Ivemeyer M, Labeit S, Hinssen H, Ruegg JC and Gautel M (1997) Actin-titin interaction in cardiac myofibrils: probing a physiological role. Biophys J 73: 905–919.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Stockmeier MR, Ivemeyer M, Hosser H and Mundel P (1998) Characterizing Titin’s I-Band Ig Domain Region as an Entropic Spring. J Cell Sci 111: 1567–1574.

    PubMed  CAS  Google Scholar 

  • Ma K, Kan L and Wang K (2001) Polyproline II helix is a key structural motif of the elastic PEVK segment of titin. Biochemistry 40: 3427–3438.

    Article  PubMed  CAS  Google Scholar 

  • Marko JF and Siggia ED (1994) Fluctuations and supercoiling of DNA. Science 265: 506–508.

    Article  PubMed  CAS  Google Scholar 

  • Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF, Schulten K and Fernandez JM (1999) Mechanical unfolding intermediates in titin modules. Nature 402: 100–103.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K (1997) Connectin/titin, giant elastic protein of muscle. Faseb J 11: 341–345.

    PubMed  CAS  Google Scholar 

  • Mayans O, van der Ven PF, Wilm M, Mues A, Young P, Furst DO, Wilmanns M and Gautel M (1998) Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395: 863–869.

    Article  PubMed  CAS  Google Scholar 

  • McElhinny AS, Sorimachi H, Labeit S and Gregorio CC (2002) Dual roles of MURF-1 in the regulation of sarcomeric M-line structure and in the potential modulation of gene expression via its interaction with titin and GMEB-1. J Cell Biol 57: 125–136.

    Article  Google Scholar 

  • Minajeva A, Kulke M, Fernandez JM and Linke WA (2001) Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils. Biophys J 80: 1442–1451.

    Article  PubMed  CAS  Google Scholar 

  • Morano I, Hadicke K, Grom S, Koch A, Schwinger RH, Bohm M, Bartel S, Erdmann E and Krause EG (1994) Titin, myosin light chains and C-protein in the developing and failing human heart. J Mol Cell Cardiol 26: 361–368.

    Article  PubMed  CAS  Google Scholar 

  • Pfuhl M, Winder SJ and Pastore A (1994) Nebulin, a helical actin binding protein. Embo J 13: 1782–1789.

    PubMed  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM and Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276: 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  • Siu BL, Niimura H, Osborne JA, Fatkin D, MacRae C, Solomon S, Benson DW, Seidman JG and Seidman CE (1999) Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation 99: 1022–1026.

    Article  PubMed  CAS  Google Scholar 

  • Solaro RJ, Moir AJ and Perry SV (1976) Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature 262: 615–617.

    Article  PubMed  CAS  Google Scholar 

  • Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa K, Maruyama K, et al. (1995) Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 270: 31158–31162.

    Article  PubMed  CAS  Google Scholar 

  • Strang KT and Moss RL (1995) Alpha 1-adrenergic receptor stimulation decreases maximum shortening velocity of skinned single ventricular myocytes from rats. Circ Res 11: 114–120.

    Article  Google Scholar 

  • Strang KT, Sweitzer NK, Greaser ML and Moss RL (1994) Beta-adrenergic receptor stimulation increases unloaded shortening velocity of skinned single ventricular myocytes from rats. Circ Res 74: 542–549.

    Article  PubMed  CAS  Google Scholar 

  • Trombitas K and Granzier H (1997). Actin removal from cardiac myocytes shows that near Z-line titin attaches to actin while under tension. Am J Physiol 273: C662–C670.

    PubMed  CAS  Google Scholar 

  • Trombitas K, Freiburg A, Centner T, Labeit S and Granzier H (1999) Molecular dissection of N2B cardiac titin’s extensibility. Biophys J 77 3189–3196.

    Article  PubMed  CAS  Google Scholar 

  • Trombitas K, Greaser M, French G and Granzier H (1998a) PEVK extension of human soleus muscle titin revealed by immunolabeling with the anti-titin antibody 9D10. J Struct Biol 122: 188–196.

    Article  PubMed  CAS  Google Scholar 

  • Trombitas K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M and Granzier H (1998b) Titin extensibility in situ: entropie elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 140: 853–859.

    Article  PubMed  CAS  Google Scholar 

  • Trombitas K, Redkar A, Centner T, Wu Y, Labeit S and Granzier H (2000) Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Biophys J 79: 3226–3234.

    Article  PubMed  CAS  Google Scholar 

  • Trombitas K, Wu Y, Labeit D, Labeit S and Granzier H (2001) Cardiac titin isoforms are coexpressed in the half-sarcomere and extend independently. Am J Physiol Heart Circ Physiol 281: H1793–H1799.

    PubMed  CAS  Google Scholar 

  • Tskhovrebova L and Trinick J (2001) Flexibility and extensibility in the titin molecule: analysis of electron microscope data. J Mol Biol 310: 755–771.

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L and Trinick J (2002) Role of titin in vertebrate striated muscle. Philos Trans R Soc Lond B Biol Sci 357: 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J, Sleep JA and Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387: 308–312.

    Article  PubMed  CAS  Google Scholar 

  • Wang K (1984) Cytoskeletal matrix in striated muscle: the role of titin, nebulin and intermediate filaments. Adv Exp Med Biol 170: 285–305.

    Article  PubMed  CAS  Google Scholar 

  • Wang K (1996) Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv Biophys J 33: 123–134.

    Article  CAS  Google Scholar 

  • Watanabe K, Muhle-Goll C, Kellermayer MS, Labeit S and Granzier H (2002a) Different molecular mechanics displayed by titin’s constitutively and differentially expressed tandem Ig segments. J Struct Biol 137: 248–258.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Nair P, Labeit D, Kellermayer MS, Greaser M, Labeit S and Granzier H (2002b) Molecular mechanics of cardiac titin’s PEVK and N2B spring elements. J Biol Chem 277: 11549–11558.

    Article  PubMed  CAS  Google Scholar 

  • Williamson MP (1994) The structure and function of proline-rich regions in proteins. Biochem J 297: 249–260.

    PubMed  CAS  Google Scholar 

  • Wu Y, Bell SP, Le Winter MM, Labeit S and Granzier H (2002a) Titin: an endosarcomeric protein that modulates myocardial stiffness. J Cardiac Failure 8: S276–S286.

    Article  CAS  Google Scholar 

  • Wu Y, Bell SP, Trombitas K, Witt CW, Labeit S, LeWinter MM and Granzier H (2002b) Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness. Circulation, in press.

    Google Scholar 

  • Yamasaki R, Berri M, Wu Y, Trombitas K, McNabb M, Kellermayer MS, Witt C, Labeit D, Labeit S, Greaser M, et al. (2001) Titinactin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/sl00al. Biophys J 81: 2297–2313.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki R, Wu Y, McNabb M, Greaser M, Labeit S and Granzier H (2002) Protein kinase A phosphorylates titin’s cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ Res 90: 1181–1188.

    Article  PubMed  CAS  Google Scholar 

  • Young P, Ehler E and Gautel M (2001) Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol 154: 123–136.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk Granzier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Granzier, H., Labeit, D., Wu, Y., Labeit, S. (2003). Titin as a modular spring: emerging mechanisms for elasticity control by titin in cardiac physiology and pathophysiology. In: Linke, W.A., Granzier, H., Kellermayer, M.S.Z. (eds) Mechanics of Elastic Biomolecules. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0147-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0147-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3971-0

  • Online ISBN: 978-94-010-0147-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics