Skip to main content

Micromechanical studies of mitotic chromosomes

  • Chapter
Mechanics of Elastic Biomolecules
  • 397 Accesses

Abstract

We review micromechanical experiments on mitotic chromosomes. We focus on work where chromosomes were extracted from prometaphase amphibian cells, and then studied by micromanipulation and microfluidic biochemical techniques. These experiments reveal that chromosomes have well-behaved elastic response over a fivefold range of stretching, with an elastic modulus similar to that of a loosely tethered polymer network. Perturbation by microfluidic’ spraying’ of various ions reveals that the mitotic chromosome can be rapidly and reversibly decondensed or overcondensed, i.e. that the native state is not maximally compacted. Finally, we discuss microspraying experiments of DNA-cutting enzymes which reveal that the element which gives mitotic chromosomes their mechanical integrity is DNA itself. These experiments indicate that chromatin-condensing proteins are not organized into a mechanically contiguous’ scaffold’, but instead that the mitotic chromosome is best thought of as a cross-linked network of chromatin. Preliminary results from restriction-enzyme digestion experiments indicate a spacing between chromatin ‘cross-links’ of roughly 15 kb, a size similar to that inferred from classical chromatin-loop-isolation studies. We compare our results to similar experiments done by Houchmandzadeh and Dimitrov (J Cell Biol 145: 215–213 (1999)) on chromatids reconstituted using Xenopus egg extracts. Remarkably, while the stretching elastic response of the reconstituted chromosomes is similar to that observed for chromosomes from cells, the reconstituted chromosomes are far more easily bent. This result suggests that reconstituted chromatids have a large-scale structure which is quite different from chromosomes in somatic cells. More generally our results suggest a strategy for the use of micromanipulation methods for the study of chromosome structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi Y, Luke M and Laemmi UK (1991) Chromosome assembly in vitro: topoisomerase II is required for condensation. Cell 64: 137–148.

    PubMed  CAS  Google Scholar 

  • Allemand JF, Bensimon D, Lavery R and Croquette V (1998) Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc Natl Acad Sci USA 95: 14152–14157.

    PubMed  CAS  Google Scholar 

  • Alut JG and Nicklas RB (1989) Tension, microtubule rearrangements, and the proper distribution of chromosomes in mitosis. Chromosoma 98: 33–39.

    Google Scholar 

  • Anderson JD and Widom J (2000) Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J Mol Biol 296: 979–987.

    PubMed  CAS  Google Scholar 

  • Arents G, Burlingame RW, Wang BC, Love WE and Moudrianakis EN (1991) The nucleosomal core histone at 3.1 A resolution: a tripartite protein assembly and a left-handed. Proc Natl Acad Sci USA 22: 10148–10152.

    Google Scholar 

  • Bak AL, Zeuthen J and Crick FH (1977) Higher-order structure of human mitotic chromosomes. Proc Nat Acad Sci USA 74: 1595–1599.

    PubMed  CAS  Google Scholar 

  • Bak P, Bak AL and Zeuthen J (1979) Characterization of human chromosomal unit fibers. Chromosoma 73: 301–315.

    PubMed  CAS  Google Scholar 

  • Beerman AEL and Jay DG (1994) Chromophore-assisted laser inactivation of cellular proteins. Meth Cell Biol 44: 715–731.

    Google Scholar 

  • Belmont AS, Sedat JW and Agard DA (1987) A three-dimensional approach to mitotic chromosome structure: evidence for a complex heirarchical organization. J Cell Biol 105: 77–92.

    PubMed  CAS  Google Scholar 

  • Belmont AS, Braunfeld MB, Sedat JW and Agard DA (1989) Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro. Chromosoma 98: 129–143.

    PubMed  CAS  Google Scholar 

  • Belmont AS (2001), Visualizing chromosome dynamics with GFP. Trends Cell Biol 11: 250–257.

    PubMed  CAS  Google Scholar 

  • Bennink ML, Leuba SH, Leno GH, Zlatanova J, de Grooth BG, Greve J (2001) Unfolding individual nucleosomes by stretching single chromatin fibres with optical tweezers, Nat. Struct. Biol. 8: 606–610.

    PubMed  CAS  Google Scholar 

  • Boy de la Tour E and Laemmli UK (1988) The metaphase scaffold is helically folded: sister chromatids have predominantly opposite helical handedness. Cell 55: 937–944.

    PubMed  CAS  Google Scholar 

  • Brown KT and Flaming D-C (1986) Advanced Micropipette Techniques for Cell Physiology, John Wiley & Sons, New York, pp. 139–141.

    Google Scholar 

  • Brower-Toland BD, Smith CL, Yeh RC, Lis JT, Peterson CL and Wang MD (2002) Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc Nat Acad Sci USA 99: 1752–1754.

    Google Scholar 

  • Bustamante C, Marko JF, Siggia ED and Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265: 1599–1600.

    PubMed  CAS  Google Scholar 

  • Bustamante C, Smith SB, Liphardt J and Smith D (2000) Curr Opin Struct Biol 10: 279–285.

    PubMed  CAS  Google Scholar 

  • Callan HG (1955) Recent work on the structure of cell nuclei. In: Fine Structure of Cells. Symposium of the VIHth Congress in Cell Biology, Leiden 1954, Noordhof, Groningen, pp. 89–109.

    Google Scholar 

  • Callan HG (1982) The Croonian Lecture, 1981. Lampbrush chromosomes. Proc Roy Soc London B 214: 417–448.

    CAS  Google Scholar 

  • Callan HG (1986) Lampbrush Chromosomes, Springer, New York.

    Google Scholar 

  • Christensen MO, Larsen MK, Barthelmes HU, Hock R, Andersen CL, Kjeldsen E, Knudsen BR, Westergaard O, Boege F and Mielke C (2002) J Cell Biol 157: 31–44.

    PubMed  CAS  Google Scholar 

  • Claussen U, Mazur A and Rubstov N (1994) Chromosomes are highly elastic and can be stretched. Cytogenet Cell Gen 66: 120–125.

    CAS  Google Scholar 

  • Cluzel P, Lebrun A, Heller C, Lavery R, Viovy JL, Chatenay D and Caron F (1996) DNA: an extensible molecule. Science 271: 792–794.

    PubMed  CAS  Google Scholar 

  • Cook PR (1991) The nucleoskeleton and the topology of replication. Cell 66: 627–637.

    PubMed  CAS  Google Scholar 

  • Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schrock E, Speicher MR, Mathieu U, Jauch A, Emmerich P, et al. (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 58: 777–792.

    PubMed  CAS  Google Scholar 

  • Cui Y, Bustamante C (2000) Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc Natl Acad Sci USA 97: 127–132.

    PubMed  CAS  Google Scholar 

  • Cunha S, Odijk T, Suleymanoglu E and Woldringh CL (2001a) Isolation of the Escherichia coli nucleoid. Biochimie 83: 149–154.

    PubMed  CAS  Google Scholar 

  • Cunha S, Woldringh CL and Odijk T (2001b) Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids. J Struct Biol 136: 53–166.

    PubMed  CAS  Google Scholar 

  • de Gennes P-G (1979) Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca NY.

    Google Scholar 

  • Dekker J, Rippe K, Dekker M and Kleckner N (2002) Capturing chromosome conformation. Science 295: 1306–1311.

    PubMed  CAS  Google Scholar 

  • Dietzel S and Belmont AS (2001) Reproducible but dynamic positioning of DNA in chromosomes during mitosis. Nat Cell Biol 3: 767–770.

    PubMed  CAS  Google Scholar 

  • Earnshaw WC and Laemmli UK (1983) Architecture of metaphase chromosomes and chromosome scaffolds. J Cell Biol 96: 84–93.

    PubMed  CAS  Google Scholar 

  • Gall JG (1956) On the submicroscopic structure of chromosomes. Brookhaven Symp Biol 8: 17–32.

    PubMed  Google Scholar 

  • Gall JG (1963) Kinetics of deoxyribonuclease action on chromosomes. Nature 198: 36–38.

    PubMed  CAS  Google Scholar 

  • Gasser SM, Laroche T, Falquet J, Boy de la Tour E and Laemmli UK (1986) Metaphase chromosome structure. Involvement of topoisomerase II. J Mol Biol 188: 613–629.

    PubMed  CAS  Google Scholar 

  • Gittes F, Mickey B, Nettleson J and Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120: 923–934.

    PubMed  CAS  Google Scholar 

  • Gregory TR (2001) Animal genome size database, http://www.genome-size.com

  • Guacci V, Koshland D and Strunnikov A (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91: 47–57.

    PubMed  CAS  Google Scholar 

  • Ha B-Y and Liu AJ (1997) Counterion-mediated attraction between two like-charged rods. Phys Rev Lett 79: 1289–1292.

    CAS  Google Scholar 

  • Hagerman PJ (1988) Flexibility of DNA. Ann Rev Biophys Biochem 17: 265–286.

    CAS  Google Scholar 

  • Harnau L and Reineker P (1999) Phys Rev E 60: 4671–4676.

    CAS  Google Scholar 

  • Hinnebusch BJ and Bendich AJ (1997) The bacterial nucleoid visualized by fluorescence microscopy of cells lysed within agarose: comparison of Escherichia coli and spirochetes of the genus Borrelia. J Bacteriol 179: 2228–2237.

    PubMed  CAS  Google Scholar 

  • Hirano T and Mitchison J (1993) Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts. J Cell Biol 120: 601–612.

    PubMed  CAS  Google Scholar 

  • Hirano T and Mitchison J (1994) A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79: 449–458.

    PubMed  CAS  Google Scholar 

  • Hirano T (1995) Biochemical and genetic dissection of mitotic chromosome condensation. TIBS 20: 357–361.

    PubMed  CAS  Google Scholar 

  • Hirano T, Kobayashi R and Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila barren protein. Cell 89: 511–521.

    PubMed  CAS  Google Scholar 

  • Hirano T (1998) SMC protein complexes and higher-order chromosome dynamics. Curr Opin Cell Biol 10: 317–322.

    PubMed  CAS  Google Scholar 

  • Hirano T (1999) SMC-mediated chromosome mechanics: a conserved scheme from bacteria to vertebrates? Genes and Dev 13: 11–19.

    PubMed  CAS  Google Scholar 

  • Hirano T (2000) Chromosome cohesion, condensation, and separation. Ann Rev Biochem 69: 115–144.

    PubMed  CAS  Google Scholar 

  • Hliscs R, Muhlig P and Claussen U (1997a) The nature of G-bands analyzed by chromosome stretching. Cytogenet Cell Genet 79: 162–166.

    PubMed  CAS  Google Scholar 

  • Hliscs R, Muhlig P and Claussen U (1997b) The spreading of metaphases is a slow process which leads to a stretching of chromosomes, Cytogenet Cell Genet 76: 167–171.

    PubMed  CAS  Google Scholar 

  • Horowitz RA, Agard DA, Sedat JW and Woodcock CL (1994) The three dimensional architecture of chromatin in situ: electron tomograph reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J Cell Biol 125: 1–10.

    PubMed  CAS  Google Scholar 

  • Houchmandzadeh B, Marko JF, Chatenay D and Libchaber A (1997) Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration. J Cell Biol 139: 1–12.

    PubMed  CAS  Google Scholar 

  • Houchmandzadeh B and Dimitrov S (1999) Elasticity measurements show the existence of thin rigid cores inside mitotic chromosomes. J Cell Biol 145: 215–223.

    PubMed  CAS  Google Scholar 

  • Hutchison N and Pardue ML (1975) The mitotic chromosomes of Nothophthalamus (= Triturus) viridescens: localization of C banding regions and DNA sequences complementary to 18S, 28S, and 5S ribosomal DNA. Chromosoma 53: 51–69.

    PubMed  CAS  Google Scholar 

  • Izawa M, Allfrey VG and Mirsky AL (1963) The relationship between RNA synthesis and loop structure in lampbrush chromosomes. Proc Nat Acad Sci. USA 49: 544–551.

    PubMed  CAS  Google Scholar 

  • Jackson DA, Dickinson P and Cook PR (1990) The size of chromatin loops in HeLa cells. EM BO J 9: 567–571.

    CAS  Google Scholar 

  • Joglekar A and Hunt AJ (2002) A simple mechanistic model for directional instability during mitotic chromosome movement. Biophys J 83: 42–58.

    PubMed  CAS  Google Scholar 

  • Kellermayer MSZ, Smith SB, Granzier HL and Bustamante C (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276: 1112–1116.

    PubMed  CAS  Google Scholar 

  • Kimura K and Hirano T (1997) ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90: 625–634.

    PubMed  CAS  Google Scholar 

  • Kimura K, Rybenkov VV, Crisona NJ, Hirano T and Cozzarelli NR (1999) 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98: 239–248.

    PubMed  CAS  Google Scholar 

  • King JM, Hays TS and Nicklas RB (2000) Tension on chromosomes increases the number of kinetochore microtubules, but only within limits. J Cell Sci 113: 3815–3823.

    PubMed  CAS  Google Scholar 

  • Kleckner N. Meiosis: how could it work? (1996) Proc Natl Acad Sci USA 93: 8167–8174.

    PubMed  CAS  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Chromatin structure is based on a repeating unit of eight histone molecules and about 200 base pairs of DNA. Science 184:868–871.

    PubMed  CAS  Google Scholar 

  • Koshland D and Strunnikov A (1996) Mitotic chromosome condensation. Annu Rev Cell Dev Biol 12: 305–333.

    PubMed  CAS  Google Scholar 

  • Laemmli UK (2002) Packaging genes into chromosomes, http://www.molbio.unige.ch/PACKGENE/PAGEl.html.

  • Ladoux B, Quivy JP, Doyle P, du Roure O, Almouzni G and Viovy JL (2000) Fast kinetics of chromatin assembly revealed by single-molecule videomicroscopy and scanning force microscopy. Proc Nat Acad Sci USA 97: 14,251–14,256.

    PubMed  CAS  Google Scholar 

  • Landau LD and Lifshitz IM (1986) Theory of Elasticity. Pergamon, New York.

    Google Scholar 

  • Leforestier A, Fudaley S and Li volant F (1999) Spermidine-induced aggregation of nucleosome core particles: evidence for multiple liquid crystalline phases. J Mol Biol 290: 481–494.

    PubMed  CAS  Google Scholar 

  • Leger JF, Robert J, Bourdieu L, Chatenay D and Marko JF (1998) RecA binding to a single double-stranded DNA molecule: A possible role of DNA conformational fluctuations. Proc Natl Acad Sci USA 95: 12,295–12,299.

    PubMed  CAS  Google Scholar 

  • Leger JF, Romano G, Sarkar A, Robert J, Bourdieu L, Chatenay D and Marko JF (1999) Structural transitions of a twisted and stretched DNA molecule. Phys Rev Lett 83: 1066–1069.

    CAS  Google Scholar 

  • Lever MA, Th’ng JP, Sun X and Hendzel MJ (2000) Rapid exchange of histone H1.1 on chromatin in living human cells. Nature 408: 873–876.

    PubMed  CAS  Google Scholar 

  • Lewin B (2000) Genes VII. Oxford University Press, New York.

    Google Scholar 

  • Li X and Nicklas RB (1995) Mitotic forces control a cell-cycle checkpoint. Nature 373: 630–632.

    PubMed  CAS  Google Scholar 

  • Li X and Nicklas RB (1997) Tension-sensitive kinetochore phosphorylation and the chromosome distribution checkpoint in praying mantis spermatocytes. J Cell Sci 110: 537–545.

    PubMed  CAS  Google Scholar 

  • Liphardt J, Onoa B, Smith SB, Tinoco I Jr. and Bustamante C (2001) Science 292: 733–737.

    PubMed  CAS  Google Scholar 

  • Livolant F (1978) Positive and negative birefringence in chromosomes. Chromosoma 21: 45–58.

    Google Scholar 

  • Livolant F and Maestre MF (1988) Circular dichroism microscopy of compact forms of DNA and chromatin in vivo and in vitro: cholesteric liquid-crystalline phases of DNA and single dinoflagel-late nuclei. Biochemistry 27: 3056–3068.

    PubMed  CAS  Google Scholar 

  • Livolant F and Leforestier A (2000) Chiral discotic columnar germs of nucleosome core particles. Biophys J 78: 2716–2729.

    PubMed  CAS  Google Scholar 

  • Lodish H, Baltimore D, Berk A, Zipursky SL, Matsudaria P and Darnell J (1995) Molecular Cell Biology, Scientific American, New York.

    Google Scholar 

  • Losada A, Hirano M and Hirano T (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12: 1986–1997.

    PubMed  CAS  Google Scholar 

  • Losada A and Hirano T (2001) Shaping the metaphase chromosome: coordination of cohesion and condensation. Bioessays 23: 924–935.

    PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF and Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260.

    PubMed  CAS  Google Scholar 

  • Machado C, Sunke CE and Andrew DJ (1998) Human autoantibodies reveal titin as a chromosomal protein. J Cell Biol 141: 321–333.

    PubMed  CAS  Google Scholar 

  • Machado C and Andrew DJ (2000a) D-titin: a giant protein with dual roles in chromosomes and muscles. J Cell Biol 151: 639–652.

    PubMed  CAS  Google Scholar 

  • Machado C and Andrew DJ (2000b) Titin as a chromosomal protein. Adv Exp Med Biol 481: 221–236.

    PubMed  CAS  Google Scholar 

  • Manders EMM, Kimura H and Cook PR, Direct imaging of DNA in living cells reveals the dynamics of chromosome formation (1999) J Cell Biol 144: 813–821.

    PubMed  CAS  Google Scholar 

  • Maniotis AJ, Bojanowski K and Ingber DE (1997) Mechanical continuity and reversible chromosome disassembly within intact genomes removed from living cells. J Cell Biochem 65: 114–130.

    PubMed  CAS  Google Scholar 

  • Marko JF and Siggia ED (1997a) Polymer models of meiotic and mitotic chromosomes. Mol Biol Cell 8: 2217–2231.

    PubMed  CAS  Google Scholar 

  • Marko JF and Siggia ED (1997b) Driving proteins off DNA with applied tension. Biophys J 73: 2173–2178.

    PubMed  CAS  Google Scholar 

  • Marsden MP and Laemmli UK (1979) Metaphase chromosome structure: evidence for a radial loop model. Cell 17: 849–858.

    PubMed  CAS  Google Scholar 

  • Marshall WF, Dernburg AF, Harmon B, Agard DA and Sedat JW (1996) Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell 7: 825–842.

    PubMed  CAS  Google Scholar 

  • Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A, Belmont A, Murray AW, Agard DA and Sedat JW (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 1: 930–939.

    Google Scholar 

  • Marshall WF, Marko JF, Agard DA and Sedat JW (2001) Chromosomal elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis. Curr Biol 11: 1–20.

    Google Scholar 

  • Melby T, Ciampaglio CN, Briscoe G and Erickson HP (1998) The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J Cell Biol 142: 1595–1604.

    PubMed  CAS  Google Scholar 

  • Michaelis C, Ciock R and Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91: 35–45.

    PubMed  CAS  Google Scholar 

  • Miller OL and Beatty BR (1969) Visualization of nucleolar genes. Science 164: 955–957.

    PubMed  Google Scholar 

  • Miller OL and Hamkalo BA (1972) Visualization of RNA synthesis on chromosomes. Int Rev Cytol 33: 1–25.

    PubMed  Google Scholar 

  • Misteli T, Gunjan A, Hock R, Bustin M and Brown DT (2000) Dynamic binding of histone HI to chromatin in living cells. Nature 408: 877–881.

    PubMed  CAS  Google Scholar 

  • Morgan GT (2002) Lampbrush chromosomes and associated bodies: new insights into principles of nuclear structure and function. Chromosome Res 10: 177–200.

    PubMed  CAS  Google Scholar 

  • Nguyen TT, Rouzina I and Shklovskii BI (2000) Reentrant Condensation of DNA induced by multivalent counterions. J Chem Phys 112: 2562–2568.

    CAS  Google Scholar 

  • Nguyen TT and Shklovskii BI (2001) Complexation of DNA with positive spheres: phase diagram of charge inversion and reentrant condensation. J Chem Phys 115: 7298–7308.

    CAS  Google Scholar 

  • Nicklas RB and Staehly CA (1967) Chromosome micromanipulation. I The mechanics of chromosome attachment to the spindle. Chromosoma 21: 1–16.

    PubMed  CAS  Google Scholar 

  • Nicklas RB (1983) Measurements of the force produced by the mitotic spindle in anaphase. J Cell Biol 97: 542–548.

    PubMed  CAS  Google Scholar 

  • Nicklas RB (1988) The forces that move chromosomes in mitosis. Annu Rev Biophys Biophys Chem 17: 431–449.

    PubMed  CAS  Google Scholar 

  • Nicklas RB and Ward SC (1994) Elements of error correction in mitosis: microtubule capture, release, and tension. J Cell Biol 126: 1241–1253.

    PubMed  CAS  Google Scholar 

  • Nicklas RB, Ward SC and Gorbsky GJ (1995) Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint. J Cell Biol 130: 929–939.

    PubMed  CAS  Google Scholar 

  • Nicklas RB (1997) How cells get the right chromosomes. Science 275: 632–637.

    PubMed  CAS  Google Scholar 

  • Nicklas RB, Campbell MS, Ward SC and Gorbsky GJ (1998) Tension-sensitive kinetochore phosphorylation in vivo. J Cell Sci 111: 3189–3196.

    PubMed  CAS  Google Scholar 

  • Nicklas RB, Waters JC, Salmon ED and Ward SC (2001) Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential. J Cell Sci 114: 4173–4183.

    PubMed  CAS  Google Scholar 

  • Paulson JR and Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12: 817–828.

    PubMed  CAS  Google Scholar 

  • Paulson JR (1988) Scaffolding and radial loops: the structural organization of metaphase chromosomes. In: Chromosomes and Chromatin, Vol. III. Adolph KW, (ed.) (pp. 3–30) CRC Press, Boca Raton, FL.

    Google Scholar 

  • Pederson T (2000) Half a century of ‘the nuclear matrix’. Mol Biol Cell 11: 799–805.

    PubMed  CAS  Google Scholar 

  • Pelta J, Livolant F and Sikorav JL (1996) DNA aggregation induced by polyamines and cobalthexamine. J Biol Chem 27: 5656–5662.

    Google Scholar 

  • Poirier M, Eroglu S, Chatenay D and Marko JF (2000) Reversible and Irreversible Unfolding of Mitotic Chromosomes by Applied Force. Mol Biol Cell 11: 269–276.

    PubMed  CAS  Google Scholar 

  • Poirier MG, Nemani A, Gupta P, Eroglu S and Marko JF (2001a) Probing Chromosome Structure Using Dynamics of Force Relaxation. Phys Rev Lett 86: 360–363.

    PubMed  CAS  Google Scholar 

  • Poirier MG, Combined biochemical-micromechanical study of mitotic chromosomes (2001b) Ph.D. thesis (University of Illinois at Chicago), available from http://www.uic.edu/~jmarko.

  • Poirier MG, Monhait T and Marko JF (2002a) Condensation and decondensation of mitotic chromosomes driven by shifts in ionic conditions. J Cell Biochem 85: 422–434.

    PubMed  CAS  Google Scholar 

  • Poirier MG and Marko JF (2002b) Bending Rigidity of Mitotic Chromosomes. Mol Biol Cell 13: 2170–2179.

    PubMed  CAS  Google Scholar 

  • Poirier MG and Marko JF (2002c) Effect of internal viscosity on biofilament dynamics. Phys Rev Lett 88: 228103.

    PubMed  Google Scholar 

  • Poirier MG, Marko JF (2002d) Mitotic chromosomes are chromatin networks without a contiguous protein scaffold. Proc. Natl. Acad. Sci. USA 99: 15393–15397.

    PubMed  CAS  Google Scholar 

  • Polach KJ and Widom J (1995) Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol 254: 130–149.

    PubMed  CAS  Google Scholar 

  • Reese DH, Yamada T and Moret R (1976) An established cell line from the newt Notophthalmus viridescens. Differentiation 6: 75–81.

    PubMed  CAS  Google Scholar 

  • Reif M, Guatel M, Oesterhelt F, Fernandez JM and Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276: 1109–1112.

    Google Scholar 

  • Richmond TJ, Finch JT, Rushton B, Rhodes D and Klug A (1984) Structure of the nuclosome core particle at 7 A resolution. Nature 311: 532–537.

    PubMed  CAS  Google Scholar 

  • Rieder CL and Hard R (1990) Newt lung epithelial cells: cultivation, use, and advantages for biomedical research. Int Rev Cytol 122: 153–220.

    PubMed  CAS  Google Scholar 

  • Saminathan M, Antony T, Shirahata A, Sigal LH and Thomas TJ (1999) Ionic and Structural Specificity Effects of Natural and Synthetic Polyamines on the Aggregation and Resolubilization of Single-, Double-, and Triple-Stranded DNA. Biochemistry 38: 3821–3830.

    PubMed  CAS  Google Scholar 

  • Saitoh Y and Laemmli UK (1993) From the chromosomal loops and the scaffold to the classic bands of metaphase chromosomes. Cold Spring Harb Symp Quant Biol 58: 755–765.

    PubMed  CAS  Google Scholar 

  • Saitoh Y and Laemmli UK (1994) Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell 76: 609–622.

    PubMed  CAS  Google Scholar 

  • Skibbens RV and Salmon ED (1997) Micromanipulation of chromosomes in mitotic vertebrate tissue cells: tension controls the state of kinetochore movement. Exp. Cell Res. 15: 235, 314–235, 324.

    Google Scholar 

  • Smith SB, Finzi L and Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258: 1122–1126.

    PubMed  CAS  Google Scholar 

  • Smith SB, Cui Y and Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271: 795–799.

    PubMed  CAS  Google Scholar 

  • Smythe C and Newport JW (1991) Systems for the study of nuclear assembly, DNA replication, and nuclear breakdown in Xenopus laevis egg extracts. Methods Cell Biol 35: 449–468.

    PubMed  CAS  Google Scholar 

  • Stack SM and Anderson LK (2001) A model for chromosome structure during the mitotic and meiotic cell cycles. Chromosome Res 9: 175–198.

    PubMed  CAS  Google Scholar 

  • Strunnikov AV, Larionov VL and Koshland D (1993) SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubitquitous family. J Cell Biol 123: 1635–1648.

    PubMed  CAS  Google Scholar 

  • Strunnikov AV, Hogan E and Koshland D (1995) SMC2, a Sacchar-omyces cerivisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev 9: 587–599.

    PubMed  CAS  Google Scholar 

  • Strunnikov AV (1998) SMC proteins and chromosome structure. Trends Cell Biol 8: 454–459.

    PubMed  CAS  Google Scholar 

  • Strunnikov AV and Jessberger R (1999) Structural maintenance of chromosomes (SMC) proteins: conserved molecular properties for multiple biological functions. Eur J Biochem 263: 6–13.

    PubMed  CAS  Google Scholar 

  • Sumner AT (1996) The distribution of topoisomerase II on mammalian chromosomes. Chromosome Res 4: 5–14.

    PubMed  CAS  Google Scholar 

  • Tanaka T and Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70: 1214–1218.

    CAS  Google Scholar 

  • Tang JX and Janmey PA (1996) The polyelectrolyte nature of F-actin and the mechanism of actin bundle formation. J Biol Chem 271: 8556–8563.

    PubMed  CAS  Google Scholar 

  • Thoma F, Koller T and Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83: 403–427.

    PubMed  CAS  Google Scholar 

  • Thrower DA and Bloom K (2001) Dicentric chromosome stretching during anaphase reveals roles of Sir2/Ku in chromatin compaction in budding yeast. Mol Biol Cell 12: 2800–2812.

    PubMed  CAS  Google Scholar 

  • Trask BJ, Allen S, Massa H, Fertitta A, Sachs R, van den Engh G and Wu M (1993) Studies of metaphase and interphase chromosomes using fluorescence in situ hybridization. Cold Spring Harb Symp Quant Biol 58: 767–775.

    PubMed  CAS  Google Scholar 

  • Trinick J (1996) Titin as scaffold and spring. Curr Biol 6: 258–260.

    PubMed  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J, Sleep J-A and Simmons R-M (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387: 308–312.

    PubMed  CAS  Google Scholar 

  • Tsukamoto T, Hashiguchi N, Janicki SM, Tumbar T, Belmont AS and Spector DL (2000) Visualization of gene activity in living cells. Nature Cell Biol 2: 871–878.

    PubMed  CAS  Google Scholar 

  • Van Holde K (1989) Chromatin. Springer, New York.

    Google Scholar 

  • Warburton PE and Earnshaw WC (1997) Untangling the role of DNA topoisomerase II in mitotic chromosome structure and function. Bioassays 19: 97–99.

    CAS  Google Scholar 

  • Widom J and Klug A (1985) Structure of the 300A chromatin filament: X-ray diffraction from oriented samples. Cell 43: 207–213.

    PubMed  CAS  Google Scholar 

  • Widom J (1997) Chromosome structure and gene regulation. Physica A 244: 497–509.

    CAS  Google Scholar 

  • Wolffe A (1995) Chromatin. Academic, San Diego.

    Google Scholar 

  • Wolffe AP and Guschin D (2000) Chromatin Structural Features and Targets That Regulate Transcription. J Struct Biol 129: 102–122.

    PubMed  CAS  Google Scholar 

  • Woodcock CL and Horowitz RA (1995) Chromatin organization reviewed. Trends Cell Biol 5: 272–277.

    PubMed  CAS  Google Scholar 

  • Wuite GJ, Smith SB, Young M, Keller D and Bustamante C (2000) Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404: 103–106.

    PubMed  CAS  Google Scholar 

  • Yin H, Wang MD, Svoboda K, Landick R, Block SM and Gelles J (1995) Transcription against an applied force. Science 270: 1653–1657.

    PubMed  CAS  Google Scholar 

  • Yokota H, van den Engh G, Hearst JE, Sachs R and Trask RJ (1995) Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Cell Biol 130: 1239–1249.

    PubMed  CAS  Google Scholar 

  • Zhang D and Nicklas RB (1995) The impact of chromosomes and centrosomes on spindle assembly as observed in living cells. J Cell Biol 129: 1287–1300.

    PubMed  CAS  Google Scholar 

  • Zhang D and Nicklas RB (1999) Micromanipulation of chromosomes and spindles in insect spermatocytes. Meth Cell Biol 61: 209–218.

    CAS  Google Scholar 

  • Zickler D and Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Ann Rev Genet 33: 603–754.

    PubMed  CAS  Google Scholar 

  • Zink D, Cremer T, Saffrich R, Fischer R, Trendelenburg MF, Ansorge W and Stelzer EH (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102: 241–251.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Poirier, M.G., Marko, J.F. (2003). Micromechanical studies of mitotic chromosomes. In: Linke, W.A., Granzier, H., Kellermayer, M.S.Z. (eds) Mechanics of Elastic Biomolecules. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0147-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0147-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3971-0

  • Online ISBN: 978-94-010-0147-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics