Skip to main content

Mechanics of elastin: molecular mechanism of biological elasticity and its relationship to contraction

  • Chapter
Mechanics of Elastic Biomolecules

Abstract

Description of the mechanics of elastin requires the understanding of two interlinked but distinct physical processes: the development of entropie elastic force and the occurrence of hydrophobic association. Elementary statistical-mechanical analysis of AFM single-chain force-extension data of elastin model molecules identifies damping of internal chain dynamics on extension as a fundamental source of entropie elastic force and eliminates the requirement of random chain networks. For elastin and its models, this simple analysis is substantiated experimentally by the observation of mechanical resonances in the dielectric relaxation and acoustic absorption spectra, and theoretically by the dependence of entropy on frequency of torsion-angle oscillations, and by classical molecular-mechanics and dynamics calculations of relaxed and extended states of the β-spiral description of the elastin repeat, (GVGVP) n . The role of hydrophobic hydration in the mechanics of elastin becomes apparent under conditions of isometric contraction. During force development at constant length, increase in entropie elastic force resulting from decrease in elastomer entropy occurs under conditions of increase in solvent entropy. This eliminates the solvent entropy change as the entropy change that gives rise to entropie elastic force and couples association of hydrophobic domains to the process. Therefore, association of hydrophobic domains within the elastomer at fixed length stretches interconnecting dynamic chain segments and causes an increase in the entropie elastic force due to the resulting damping of internal chain dynamics. Fundamental to the mechanics of elastin is the inverse temperature transition of hydrophobic association that occurs with development of mechanical resonances within fibrous elastin and polymers of repeat elastin sequences, which, with design of truly minimal changes in sequence, demonstrate energy conversions extant in biology and demonstrate the special capacity of bound phosphates to raise the free energy of hydrophobic association.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso LB, Bennion BJ and Daggett V (2001) Hydrophobic hydration is an important source of elasticity in elastin-based polymers. J Am Chem Soc 123: 11,991–11,998.

    Article  PubMed  Google Scholar 

  • Bottcher CJF (1973) Theory of Electric Polarization, (vol. 1, p. 178) Elsevier, Amsterdam.

    Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BO, States DT, Swaminathan S and Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4: 187.

    Article  CAS  Google Scholar 

  • Buchet R, Luan C-H, Prasad KU, Harris RD and Urry DW (1988) Dielectric relaxation studies on analogs of the polypentapeptide of elastin. J Phys Chem 92: 511–517.

    Article  CAS  Google Scholar 

  • Butler JAV (1937) The energy and entropy of hydration of organic compounds. Trans Faraday Society 33: 229–238.

    Article  CAS  Google Scholar 

  • Chang DK and Urry DW (1989) Polypentapeptide of elastin: damping of internal chain dynamics on extension. J Comput Chem 10: 850–855.

    Article  CAS  Google Scholar 

  • Chang DK, Venkatachalam CM, Prasad KU and Urry DW (1989) Nuclear overhauser effect and computational characterization of the p-spiral of the polypentapeptide of Elastin. J Biomol Struct Dynam 6: 851–858.

    Article  CAS  Google Scholar 

  • Cook WJ, Einspahr HM, Trapane TL, Urry DW and Bugg CE (1980) Crystal structure and conformation of the cyclic trimer of a repeat pentapeptide of elastin, cyclo-(L-Valyl-L-prolylglycyl-L-valylgly-cyl)3. J Am Chem Soc 102: 5502–5505.

    Article  CAS  Google Scholar 

  • Cox BA, Starcher BC and Urry DW (1973) Coacervation of α-elastin results in fiber formation. Biochim Biophys Acta 317: 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Cox BA, Starcher BC and Urry DW (1974) Coacervation of tropoelastin results in fiber formation. J Biol Chem 249: 997–998.

    PubMed  CAS  Google Scholar 

  • Dauber P, Goodman M, Hagler AT, Osguthorpe D, Sharon R and Stern P (1981) In: Lykos P and Shavitt I (eds) ACS Symposium Series No. 173. Suyper computer s in Chemistry, (pp. 161–191) American Chemical Society, Washington, DC.

    Google Scholar 

  • Eyring H, Henderson D, Stover BJ and Eyring EM (1964) Statistical Mechanics and Dynamics, (p. 92) John Wiley & Sons Inc, New York.

    Google Scholar 

  • Gaub HE and Fernandez JM (1998) The molecular elasticity of individual proteins studied by AFM-related techniques. AvH-Magazinll: 11–18.

    Google Scholar 

  • Gotte L, Giro G, Volpin D and Home RW (1974) The ultrastructural organization of elastin. J Ultrastruct Res 46: 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Henze R and Urry DW (1985) Dielectric relaxation studies demonstrate a peptide librational mode in the polypentapeptide of elastin. J Am Chem Soc 107: 2991–2993.

    Article  CAS  Google Scholar 

  • Hoeve CAJ and Flory PJ (1958) The elastic properties of elastin. J Am Chem Soc 80: 6523–6526.

    Article  CAS  Google Scholar 

  • Hoeve CAJ and Flory PJ (1974) Elastic properties of elastin. Biopolymers 13: 677–686.

    Article  PubMed  CAS  Google Scholar 

  • Karplus M and Kushick JN (1981) Method for estimating the configurational entropy of macromolecules. Macromolecules 14: 325–332.

    Article  CAS  Google Scholar 

  • Karplus M and McCammon JA (1983) Dynamics of proteins: elements of function. Ann Rev Biochem 53: 263–300.

    Article  Google Scholar 

  • Kornblihtt AR, Umezawa K, Vibepederson K and Baralle FE (1985) Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EM BO J 4: 1755–1759.

    CAS  Google Scholar 

  • Luan C-H, Harris RD and Urry DW (1988) Dielectric relaxation studies on bovine ligamentum nuchae. Biopolymers 27: 1787–1793.

    Article  PubMed  CAS  Google Scholar 

  • Luan C-H, Jaggard J, Harris RD and Urry DW (1989) On the Source of Entropie Elastomeric Force in Polypeptides and Proteins: Backbone Configurational vs. Side Chain Solvational Entropy. Int. J. of Quant. Chem.: Quant. Biol. Symp. 16: 235–244.

    CAS  Google Scholar 

  • Luan C-H and Urry DW (1999) Elastic, plastic, and hydrogel protein-based polymers. In: Mark JE (ed.) Polymer Data Handbook, (pp. 78–89, Table 3A) Oxford University Press, New York, Oxford.

    Google Scholar 

  • Momany FA, Carruthers LM, McGuire RF and Scheraga HA (1974) Intermolecular potentials from crystal data. III. Determination of empirical potentials and application to the packing configurations and lattice energies in crystals of hydrocarbons, carboxylic acids, amines, and amides. J Phys Chem 78: 1595.

    Article  CAS  Google Scholar 

  • Momany FA, McGuire FF, Burgess AW and Scheraga HA (1975) Energy parameters in polypeptides. VII. Geometric parameters, partial charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J Phys Chem 79: 2361.

    Article  CAS  Google Scholar 

  • Oberhauser AF, Hansma PK, Carrion-Vasquez M and Fernandez JM (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci USA 98: 468–472.

    Article  PubMed  CAS  Google Scholar 

  • Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58: 1486–1493.

    Article  CAS  Google Scholar 

  • Pattanaik A, Gowda DC and Urry DW (1991) Phosphorylation and dephosphorylation modulation of an inverse temperature transition. Biochem Biophys Res Comm 178: 539–545.

    Article  PubMed  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM and Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276: 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg LB, Leslie JG, Leach CT, Alvarez VL, Torres AR and Smith DW (1985) Elastin covalent structure as determined by solid phase amino acid sequencing. Pathol Biol (Paris) 33: 266–274.

    CAS  Google Scholar 

  • Sandberg LB, Soskel NT and Leslie JG (1981) Elastin structure, biosynthesis, and relation to disease states. N Engl J Med 304: 566–579.

    Article  PubMed  CAS  Google Scholar 

  • Sciortino F, Prasad KU, Urry DW and Palma MU (1993) Self-assembly of bioelastomeric structures from solutions: mean field critical behavior and Flory-Huggins free-energy of interaction. Biopolymers 33: 743–752.

    Article  PubMed  CAS  Google Scholar 

  • Sciortino F, Urry DW, Palma MU and Prasad KU (1990) Self-assembly of a bioelastomeric structure: solution dynamics and the spinodal and coacervation lines. Biopolymers 29: 1401–1407.

    Article  PubMed  CAS  Google Scholar 

  • Urry DW (1990) Protein folding and assembly: an hydration-mediated free energy driving force. In: Gierasch L and King J (eds) Protein Folding: Deciphering the Second Half of the Genetic Code. (pp. 63–71) Am. Assoc, for the Advancement of Sci., Washington, DC.

    Google Scholar 

  • Urry DW (1991) Thermally driven self-assembly, molecular structuring and entropie mechanisms in elastomeric polypeptides. In: Balaram P and Ramaseshan S (eds) Mol Conformation and Biol Interactions, (pp. 555–583) Indian Acad of Sci., Bangalore, India.

    Google Scholar 

  • Urry DW (1993) Molecular machines: how motion and other functions of living organisms can result from reversible chemical changes, Angew Chem (German) 105: 859–883, 1993; Angew Chem Int Ed Engl 32: 819–841.

    Article  CAS  Google Scholar 

  • Urry DW (1997) Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers (invited FEATURE ARTICLE). J Phys Chem B 101: 11,007–11,028.

    Google Scholar 

  • Urry DW, Luan C-H and Peng SQ (1995) Molecular Biophysics of Elastin Structure, Function and Pathology, in Proceedings of The Ciba Foundation Symposium No. 192, The Molecular Biology and Pathology of Elastic Tissues, John Wiley & Sons, Ltd., Sussex, UK, pp. 430.

    Google Scholar 

  • Urry DW and Luan C-H (1995a) A New Hydrophobicity Scale and its Relevance to Protein Folding and Interactions at Interfaces, in Proteins at Interfaces 1994, American Chemical Society Symposium Series, (Thomas A. Horbett and John L. Brash, eds.), pp. 92–110, Washington, D.C.

    Google Scholar 

  • Urry DW and Luan C-H (1995b) Proteins: structure, folding and function. In: Lenaz G (ed.) Bioelectrochemistry: Principles and Practice, (pp. 105–182) Birkhäuser Verlag AG, Basel, Switzerland.

    Google Scholar 

  • Urry DW and Venkatachalam CM (1983) A librational entropy mechanism for elastomers with repeating peptide sequences in helical array. Int J Quant Chem: Quant Biol Symp 10: 81–93.

    CAS  Google Scholar 

  • Urry DW, Chang DK, Krishna R, Huang DH, Trapane TL and Prasad KU (1989) Two dimensional proton nuclear magnetic resonance studies on poly(VPGVG) and its cyclic conformational correlate, cyclo(VPGVG)3. Biopolymers 28: 819–833.

    Article  PubMed  CAS  Google Scholar 

  • Urry DW, Harris CM, Luan CX, Luan C-H, Gowda DC, Parker TM, Peng SQ and Xu J (1997a) Transductional protein-based polymers as new controlled release vehicles. In: Park K (ed.) Controlled Drug Delivery: The Next Generation, Part VI: New Biomaterials for Drug Delivery, (pp. 405–437) Am Chem Soc Professional Reference Book.

    Google Scholar 

  • Urry DW, Haynes B, Zhang H, Harris RD and Prasad KU (1988b) Mechanochemical coupling in synthetic polypeptides by modulation of an inverse temperature transition. Proc Natl Acad Sci USA 85: 3407–3411.

    Article  PubMed  CAS  Google Scholar 

  • Urry DW, Henze R, Redington P, Long MM and Prasad KU (1985a) Temperature dependence of dielectric relaxations in α-elastin coacervate: evidence for a peptide librational mode. Biochem Biophys Res Commun 128: 1000–1006.

    Article  PubMed  CAS  Google Scholar 

  • Urry DW, Hugel T, Seitz M, Gaub H, Sheiba L, Dea J, Xu J and Parker T (2002a) Elastin: a representative ideal protein elastomer. Philos Trans Roy Soc London [Biol] 357: 169–184.

    Article  CAS  Google Scholar 

  • Urry DW, Hugel T, Seitz M, Gaub H, Sheiba L, Dea J, Xu J, Prochazka F and Parker T (2002b) In: Shewry P & Bailey A (eds) Ideal Protein Elasticity: The Elastin Model. Cambridge University Press (in press).

    Google Scholar 

  • Urry DW, Jaggard J, Prasad KU, Parker T and Harris RD (1991) Poly(Val1-Pro2-Ala3-Val4-Gly5): a reversible, inverse thermoplastic. In: Gebelein CG (ed.) Biotechnology and Polymers (pp. 265–274) Plenum Press, New York.

    Chapter  Google Scholar 

  • Urry DW, Jing N, Trapane TL, Luan C-L and Waller M (1988a) Ion interactions with the gramicidin A transmembrane channel: cesium-133 and calcium-43 NMR studies. In: Agnew W, Claudio T and Sigworth F (eds) Mol Biol of Ionic Channels 33: (vol. pp. 51–90) Academic Press, Inc., New York.

    Chapter  Google Scholar 

  • Urry DW, Peng SQ, Xu J and McPherson DT (1997b) Characterization of waters of hydrophobic hydration by microwave dielectric relaxation. J Am Chem Soc 119: 1161–1162.

    Article  CAS  Google Scholar 

  • Urry DW, Peng SQ, Hayes LC, McPherson DT, Xu J, Woods TC, Gowda DC and Pattanaik A (1998) Engineering protein-based machines to emulate key steps of metabolism (biological energy conversion). Biotechnology and Bioengineering 58: 175–190.

    Article  PubMed  CAS  Google Scholar 

  • Urry DW, Trapane TL, Sugano H and Prasad KU (1981) Sequential polypeptides of elastin: cyclic conformational correlates of the linear polypentapeptide. J Am Chem Soc 103: 2080–2089.

    Article  CAS  Google Scholar 

  • Urry DW, Trapane TL, Long MM and Prasad KU (1983a) Test of the librational entropy mechanism of elasticity of the polypentapeptide of elastin: effect of introducing a methyl group at residue-5. J Chem Soc, Faraday Trans I 79: 853–868.

    Article  CAS  Google Scholar 

  • Urry DW, Trapane TL, Wood SA, Walker JT, Harris RD and Prasad KU (1983b) D-Ala5 Analog of the elastin polypentapeptide. Physical characterization. Int J Pept Protein Res 22: 164–175.

    Article  PubMed  CAS  Google Scholar 

  • Urry DW, Trapane TL, Wood SA, Harris RD, Walker JT and Prasad KU (1984) D-Ala3 Analog of elastin polypentapeptide: an elastomer with an increased Young’s modulus. Int J Pept Protein Res 23: 425–434.

    Article  PubMed  CAS  Google Scholar 

  • Urry DW, Trapane TL, Iqbal M, Venkatachalam CM and Prasad KU (1985b) Carbon-13 NMR Relaxation studies demonstrate an inverse temperature transition in the elastin polypentapeptide. Biochemistry 24: 5182–5189.

    Article  PubMed  CAS  Google Scholar 

  • Urry DW, Trapane TL, McMichens RB, Iqbal M, Harris RD and Prasad KU (1986) Nitrogen-15 NMR relaxation study of inverse temperature transitions in elastin polypentapeptide and its Cross-Linked Elastomer. Biopolymers 25: S209–S228.

    Article  PubMed  CAS  Google Scholar 

  • Urry DW, Venkatachalam CM, Wood SA and Prasad KU (1985c) Molecular structures and librational processes in sequential polypeptides: from ion channel mechanisms to bioelastomers. In: Clementi E, Corongiu G, Sarma MH and Sarma RH (eds), Structure and Motion: Membr, Nucleic Acids and Proteins (pp. 185–203). Adenine Press, Guilderland, New York.

    Google Scholar 

  • Urry DW, Venkatachalam CM, Long MM and Prasad KU (1982) Dynamic p-spirals and A librational entropy mechanism of elasticity. In: Srinivasan R and Sarma RH (eds) Conformation in Biol. (G.N. Ramachandran Festschrift Volume pp. 11–27). Adenine Press, Guilderland, New York.

    Google Scholar 

  • Venkatachalam CM and Urry DW (1981) Development of a linear helical conformation from its cyclic correlate. β-spiral model of the elastin poly (pentapeptide), (VPGVG)n. Macromolecules 14: 1225–1229.

    Article  CAS  Google Scholar 

  • Venkatachalam CM and Urry DW (1986) Calculation of dipole moment changes due to peptide librations in the dynamic β-spiral of the polypentapeptide of elastin. Int J Quant Chem: Quant Biol Symp 12: 15–24.

    CAS  Google Scholar 

  • Voet D and Voet JG (1995) Biochemistry. 2nd edn. (p. 430, Table 15-3) John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Volpin D, Urry DW, Cox BA and Gotte L (1976a) Optical diffraction of tropoelastin and a-elastin coacervates. Biochim Biophys Acta 439: 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Volpin D, Urry DW, Cox BA, Pasquali-Ronchetti I and Gotte L (1976b) Studies by electron microscopy on the structure of coacervates of synthetic polypeptides of tropoelastin. Micron 7: 193–198.

    Google Scholar 

  • Wasserman ZR and Salemme FR (1990) A molecular dynamics investigation of the elastomeric restoring force in elastin. Biopolymers 29: 1613–1631.

    Article  PubMed  CAS  Google Scholar 

  • Weiner PK and Kollman PA (1981) AMBER: assisted model building with energy refinement. A general program for modeling molecules and their interactions. J Comput Chem 2: 287–303.

    Article  CAS  Google Scholar 

  • Weis-Fogh T and Andersen SO (1970) New molecular model for the long-range elasticity of elastin. Nature 227: 718–721.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Urry, D.W., Parker, T.M. (2003). Mechanics of elastin: molecular mechanism of biological elasticity and its relationship to contraction. In: Linke, W.A., Granzier, H., Kellermayer, M.S.Z. (eds) Mechanics of Elastic Biomolecules. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0147-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0147-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3971-0

  • Online ISBN: 978-94-010-0147-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics