Skip to main content

Mechanics of vimentin intermediate filaments

  • Chapter
Mechanics of Elastic Biomolecules

Abstract

It is increasingly evident that the cytoskeleton of living cells plays important roles in mechanical and biological functions of the cells. Here we focus on the contribution of intermediate filaments (IFs) to the mechanical behaviors of living cells. Vimentin, a major structural component of IFs in many cell types, is shown to play an important role in vital mechanical and biological functions such as cell contractility, migration, stiffness, stiffening, and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amos LA and Amos WB (1991) Molecules of the Cytoskeleton. Guilford Press, New York.

    Google Scholar 

  • Beningo K, Dembo M, Kaverina I, Small V and Wang Y-L (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroOblasts. J Cell Biol 153: 881–888.

    Article  PubMed  CAS  Google Scholar 

  • Brodland GW and Gordon R (1990) Intermediate filaments may prevent buckling of compressively loaded microtubules. AS ME J Biomech Eng 112: 319–321.

    Article  CAS  Google Scholar 

  • Brown MJ, Hallam JA, Colucci-Guyon E and Shaw S (2001) Rigidity of circulating lymphocytes is primarily conferred by vimentin intermediate filaments. J Immuno 166: 6640–6646.

    CAS  Google Scholar 

  • Chen J, Fabry B, Schiffrin EL and Wang N (2001) Twisting integrin receptors increases endothelin-1 gene expression. Am J Physiol Cell Physiol 280: C1475–C1484.

    PubMed  CAS  Google Scholar 

  • Chicurel ME, Chen CS and Ingber DE (1998) Cellular control lies in the balance of forces. Curr Opin Cell Biol 10: 232–239.

    Article  PubMed  CAS  Google Scholar 

  • Cochard P and Paulin D (1984) Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J Neurosci 4: 2080–2094.

    PubMed  CAS  Google Scholar 

  • Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S and Babinet C (1994) Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79: 679–694.

    Article  PubMed  CAS  Google Scholar 

  • Coughlin MF and Stamenovic D (1998) A tensegrity model of the cytoskeleton in spread and round cells. ASME J Biomech Eng 120: 770–777.

    Article  CAS  Google Scholar 

  • Coulombe PA, Bousquet O, Ma L, Yamada S and Wirtz D (2000) The ‘ins’ and outs’ of intermediate filament organization. Trends Cell Biol 10: 420–428.

    Article  PubMed  CAS  Google Scholar 

  • Djiabali K (1999) Cytoskeletal proteins connecting intermediate filaments to cytoplasmic and nuclear periphery. Histol Histopathol 14: 501–509.

    Google Scholar 

  • Eckes B, Dogic D, Colucci-Guyon E, Wang N, Maniotis A, Ingber D, Merckling A, Langa F, Aumailley M, Delouvée A, Koteliansky V, Babinet C and Krieg T (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 111: 1897–1907.

    PubMed  CAS  Google Scholar 

  • Frankel WW, Grund C, Kuhn C, Jackson BW and Illmensee K (1982) Formation of cytoskeletal elements during mouse embryogenesis. III. Primary mesenchymal cells and the first appearance of vimentin filaments. Differentiation 23: 43–59.

    Article  Google Scholar 

  • Galou M, Colucci-Guyon E, Ensergueix D, Ridet J-L, Gimenez Y, Ribotta M, Privât A, Babinet C and Dupouey P (1996) Disrupted glial fibrillary acidic protein network in astrocytes from vimentin knockout mice. J Cell Biol 133: 853–863.

    Article  PubMed  CAS  Google Scholar 

  • Gawlitta W, Osborn M and Weber K (1981) Coiling of intermediate filaments by microinjection of a vimentin specific antibody does not interfere with locomotion and mitosis. Eur J Cell Biol 26: 83–90.

    PubMed  CAS  Google Scholar 

  • Goldman RD, Khuon S, Chou YH, Opal P and Steinert PM (1996) The function of intermediate filaments in cell shape and cytoskeletal integrity. J Cell Biol 134: 971–983.

    Article  PubMed  CAS  Google Scholar 

  • Hedberg KK and Chen LB (1986) Absence of intermediate filaments in a human adrenal cortex carcinoma-derived cell line. Exp Cell Res 163: 509–517.

    Article  PubMed  CAS  Google Scholar 

  • Helmke BP, Goldman RD and Davies PF (2000) Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ Res 86: 745–752.

    Article  PubMed  CAS  Google Scholar 

  • Helmke BP, Thakker DB, Goldman RD and Davies PF (2001) Spatiotemporal analysis of flow-induced intermediate filament displacement in living endothelial cells. Biophys J 80: 184–194.

    Article  PubMed  CAS  Google Scholar 

  • Henrion D, Terzi F, Matrougui K, Duriez M, Boulanger CM, Colucci-Guyon E, Babinet C, Briand P, Friedlander G, Poitevin P and Levy BI (1997) Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin. J Clin Invest 100: 2909–2914.

    Article  PubMed  CAS  Google Scholar 

  • Holwell TA, Schweitzer SC and Evans RM (1997) Tetracyclin regulated expression of vimentin in fibroblasts derived from vimentin null mice. J Cell Sci 110: 1947–1956.

    PubMed  CAS  Google Scholar 

  • Huang S, Chen CS and Ingber DE (1998) Control of Cyclin Dl, p27kipl, and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol Biol Cell 9: 3179–3193.

    PubMed  CAS  Google Scholar 

  • Klymkowsky MW (1981) Intermediate filaments in 3T3 cells collapse after intracellular injection of a monoclonal anti-intermediate filament antibody. Nature 291: 249–251.

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA (1998) The cytoskeleton and cell signaling: component, localization, and mechanical coupling. Physiol Rev 78: 763–781.

    PubMed  CAS  Google Scholar 

  • Janmey PA, Euteneuer U, Traub P and Schliwa M (1991) Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113: 155–160.

    Article  PubMed  CAS  Google Scholar 

  • Lane EB, Hogan LM, Kurkinen M and Garrels JI (1983) Coexpression of vimentin and cytokeratin in parietal endoderm cells of early mouse embryo. Nature 303: 701–704.

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Xu J, Coulombe PA and Wirtz D (1999) Keratin filament suspensions show unique micromechanical properties. J Biol Chem 274: 19145–19151.

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Yamada S, Wirtz D and Coulombe PA (2001) A ‘hot-spot’ mutation alters the mechanical properties of keratin filament networks. Nat Cell Biol 3: 503–506.

    Article  PubMed  CAS  Google Scholar 

  • Morris EJ, Evason K, Wiand C, L’Ecuyer TJ and Fulton AB (2000) Misdirected vimentin messenger RNA alters cell morphology and motility. J Cell Sci 113: 2433–2443.

    PubMed  CAS  Google Scholar 

  • Schiffers PM, Henrion D, Boulanger CM, Colucci-Guyon E, Langa-Vuves F, van Essen H, Fazzi GE, Levy BI and Mey JG (2000) Altered flow-induced arterial remodeling in vimentin-deficient mice. Arterio., Throm Vascu Biol 20: 611–616.

    Article  CAS  Google Scholar 

  • Seifert GJ, Lawson D and Wiche G (1992) Immunolocalization of the intermediate filament-associated protein plectin at focal contacts and actin stress fibers. Eur J Cell Biol 59: 138–147.

    PubMed  CAS  Google Scholar 

  • Stamenovic D, Fredberg JJ, Wang N, Butler JP and Ingber DE (1996) A microstructural approach to cytoskeletal mechanics based on tensegrity. J Theor Biol 181: 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Stamenovic D and Coughlin MF (2000) A quantitative model of cellular elasticity based on tensegrity. ASME J Biomech Eng 122: 39–43.

    Article  CAS  Google Scholar 

  • Stamenovic D, Mijailovich SM, Tolic-Norrelykke IM, Chen J and Wang N (2002a) Cell prestress. II. Contribution of microtubules. Am J Physiol Cell Physiol 282: C617–C624.

    PubMed  CAS  Google Scholar 

  • Stamenovic D, Liang Z, Chen J and Wang N (2002b) The effect of the cytoskeletal prestress on the mechanical impedance of cultured airway smooth muscle cells. J Appl Physiol 92: 1443–1450.

    PubMed  Google Scholar 

  • Svitkina TM, Verkhovsky AB and Borisy GG (1996) Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol 135: 991–1007.

    Article  PubMed  CAS  Google Scholar 

  • Venetianer A, Schiller DL, Magin T and Franke WW (1983) Cessation of cytokeratin expression in a rat heptoma cell line lacking differentiated functions. Nature 305: 730–733.

    Article  PubMed  CAS  Google Scholar 

  • Wang N (1998) Mechanical interactions among cytoskeletal filaments. Hypertension 32: 162–165.

    Article  PubMed  CAS  Google Scholar 

  • Wang N and Ingber DE (1994) Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J 66: 2181–2189.

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Butler JP and Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260: 1124–1127.

    Article  PubMed  CAS  Google Scholar 

  • Wang N and Stamenovic D (2000) Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am J Physiol Cell 279:C188–C194.

    CAS  Google Scholar 

  • Wang N, Naruse K, Stamenovic D, Fredberg JJ, Mijailovich SM, Tolic-Norrelykke IM, Polte T, Mannix R and Ingber DE (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci 98: 7765–7770.

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Tolic-Norrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ and Stamenovic D (2002a) Cell prestress. I. Stiffness and pretress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282: C606–C616.

    PubMed  CAS  Google Scholar 

  • Wang N, Ostuni E, Whitesides GM and Ingber DE (2002b) Micro-patterning tracitonal forces in living cells. Cell Motil Cytoskel 52: 97–106.

    Article  Google Scholar 

  • Wiche G (1998) Role of plectin in cytoskeleton organization and dynamics. J Cell Sci 111: 2477–2486.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wang, N., Stamenovic, D. (2003). Mechanics of vimentin intermediate filaments. In: Linke, W.A., Granzier, H., Kellermayer, M.S.Z. (eds) Mechanics of Elastic Biomolecules. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0147-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0147-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3971-0

  • Online ISBN: 978-94-010-0147-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics