Skip to main content

Unfolding of titin domains studied by molecular dynamics simulations

  • Chapter
Mechanics of Elastic Biomolecules

Abstract

Titin, a ∼1 µm long protein found in striated muscle myofibrils, possesses unique elastic properties. The extensible behavior of titin has been demonstrated in atomic force microscopy and optical tweezer experiments to involve the reversible unfolding of individual immunoglobulin-like (Ig) domains. We have used steered molecular dynamics (SMD), a novel computer simulation method, to investigate the mechanical response of single titin Ig domains upon stress. Simulations of stretching Ig domains I1 and I27 have been performed in a solvent of explicit water molecules. The SMD approach provides a detailed structural and dynamic description of how Ig domains react to external forces. Validation of SMD results includes both qualitative and quantitative agreement with AFM recordings. Furthermore, combining SMD with single molecule experimental data leads to a comprehensive understanding of Ig domains’ mechanical properties. A set of backbone hydrogen bonds that link the domains’ terminal β-strands play a key role in the mechanical resistance to external forces. Slight differences in architecture permit a mechanical unfolding intermediate for I27, but not for I1. Refolding simulations of I27 demonstrate a locking mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Best RB, Li B, Steward A, Daggett V and Clarke J (2001) Can non-mechanical proteins withstand force? stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys J 81: 2344–2356.

    Article  PubMed  CAS  Google Scholar 

  • Brünger AT (1992) X-PLOR, Version 3.1: A System for X-ray Crystallography and NMR. The Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University.

    Google Scholar 

  • Carrion-Vazquez M, Oberhauser A, Fowler S, Marszalek P, Broedel S, Clarke J and Fernandez J (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci USA 96: 3694–3699.

    Article  PubMed  CAS  Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H and Fernandez JM (2000) Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog Biophys Mol Biol 74: 63–91.

    Article  PubMed  CAS  Google Scholar 

  • Craig D, Krammer A, Schulten K and Vogel V (2001) Comparison of the early stages of forced unfolding of fibronectin type III modules. Proc Natl Acad Sci USA 98: 5590–5595.

    Article  PubMed  CAS  Google Scholar 

  • Erickson H (1994) Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc Natl Acad Sci USA 91: 10114–10118.

    Article  PubMed  CAS  Google Scholar 

  • Erickson H (1997) Stretching single protein modules: titin is a weird spring. Science 276: 1090–1093.

    Article  PubMed  CAS  Google Scholar 

  • Evans E and Ritchie K (1999) Strength of a weak bond connecting flexible polymer chains. Biophys J 76: 2439–2447.

    Article  PubMed  CAS  Google Scholar 

  • Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann J, Gregorio C, Granzier H and Labeit S (2000) Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86: 1114–1121.

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Lu H and Schulten K (2001) Simulated refolding of stretched titin immunoglobulin domains. Biophys J 81: 2268–2277.

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Craig D, Vogel V and Schulten K (2002a) Identifying unfolding intermediates of FN-III 10 by steered molecular dynamics. J Mol Biol 323: 939–950.

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Wilmanns M and Schulten K (2002b) Steered molecular dynamics studies of titin I1 domain unfolding. Biophys J, 83: 3435–3445.

    Article  PubMed  CAS  Google Scholar 

  • Granzier H and Labeit S (2002) Cardiac titin: an adjustable multifunctional spring. J Physiol 541: 335–342.

    Article  PubMed  CAS  Google Scholar 

  • Grubmüller H, Heymann B and Tavan P (1996) Ligand binding and molecular mechanics calculation of the Streptavidin-Biotin Rupture Force. Science 271: 997–999.

    Article  PubMed  Google Scholar 

  • Improta S, Politou A and Pastore A (1996) Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure 4: 323–337.

    Article  PubMed  CAS  Google Scholar 

  • Isralewitz B, Gao M and Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Op Struct Biol 11: 224–230.

    Article  CAS  Google Scholar 

  • Isralewitz B, Izrailev S and Schulten K (1997) Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys J 73: 2972–2979.

    Article  PubMed  CAS  Google Scholar 

  • Izrailev S, Stepaniants S, Balsera M, Oono Y and Schulten K (1997) Molecular dynamics study of unbinding of the Avidin-Biotin complex. Biophys J 72: 1568–1581.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW and Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926–935.

    Article  CAS  Google Scholar 

  • Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K and Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comp Phys 151: 283–312.

    Article  CAS  Google Scholar 

  • Kellermayer M, Smith S, Granzier H and Bustamante C (1997) Folding-unfolding transition in single titin modules characterized with laser tweezers. Science 276: 1112–1116.

    Article  PubMed  CAS  Google Scholar 

  • Klimov DK and Thirumalai D (1999) Stretching single-domain proteins: phase diagram and kinetics of force-induced unfolding. Proc Natl Acad Sci USA 96: 1306–1315.

    Article  Google Scholar 

  • Klimov DK and Thirumalai D (2000) Native topology determines force-induced unfolding pathways in globular proteins. Proc Natl Acad Sci USA 97: 7254–7259.

    Article  PubMed  CAS  Google Scholar 

  • Krammer A, Craig D, Thomas WE, Schulten K and Vogel V (2002) A structural model for force regulated integrin binding to fibronectin’s RGD-synergy site. Matrix Biology 21: 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Krammer A, Lu H, Isralewitz B, Schulten K and Vogel V (1999) Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proc Natl Acad Sci USA 96: 1351–1356.

    Article  PubMed  CAS  Google Scholar 

  • Labeit S and Kolmerer B (1995) Titins, giant proteins in charge of muscle ultrastructure and elasticity. Science 270: 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Linke W, Oberhauser AF, Carrion-Vazquez M, Kerkvliet JG, Lu H, Marszalek PE and Fernandez JM (2002) Reverse engineering of the giant muscle protein titin. Nature 418: 998–1002.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Mariano CV, Oberhauser AF, Marszalek PE and Fernandez JM (2001a) Point mutations alter the mechanical stability of immunoglobulin modules. Nature Struct Biol 7: 1117–1120.

    Google Scholar 

  • Li H, Oberhauser AF, Redick SD, Carrion-Vazquez M, Erikson H and Fernandez JM (2001b) Multiple conformations of PEVK proteins detected by single-molecule techniques. Proc Natl Acad Sci USA 98: 10682–10686.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA (2000) Stretching molecular springs: elasticity of titin filaments in vertebrate striated muscle. Histol Histopathol 15: 799–811.

    PubMed  CAS  Google Scholar 

  • Linke WA, Ivemeyer M, Mundel P, Stockmeier MR and Kolmerer B (1998) Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci USA 95: 8052–8057.

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Isralewitz B, Krammer A, Vogel V and Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75: 662–671.

    Article  PubMed  CAS  Google Scholar 

  • Lu H and Schulten K (1999a) Steered molecular dynamics simulation of conformational changes of immunoglobulin domain I27 interpret atomic force microscopy observations. Chem Phys 247: 141–153.

    Article  CAS  Google Scholar 

  • Lu H and Schulten K (1999b) Steered molecular dynamics simulations of force-induced protein domain unfolding. Proteins Struct Func Gen 35: 453–463.

    Article  Google Scholar 

  • Lu H and Schulten K (2000) The key event in force-induced unfolding of titin’s immunoglobulin domains. Biophys J 79: 51–65.

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Kan L and Wang K (2001) Polyproline II helix is a key structural motif of the elastic PEVK segment of titin. Biochemistry 40: 3427–3438.

    Article  PubMed  CAS  Google Scholar 

  • MacKerell Jr. AD, Bashford D, Bellott M, Dunbrack Jr. RL, Evanseck J, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher IWE, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D and Karplus M (1998) All-hydrogen empirical potential for molecular modeling and dynamics studies of proteins using the CHARMM22 force field. J Phys Chem B 102: 3586–3616.

    Article  CAS  Google Scholar 

  • Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF, Schulten K and Fernandez JM (1999) Mechanical unfolding intermediates in titin modules. Nature 402: 100–103.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K (1997) Connectin/titin, a giant elastic protein of muscle. FASEBJ 11: 341–345.

    CAS  Google Scholar 

  • Mayans O, Wuerges J, Canela S, Gautel M and Wilmanns M (2001) Structural evidence for a possible role of reversible disulphide bridge formation in the elasticity of the muscle protein titin. Structure 9: 331–340.

    Article  PubMed  CAS  Google Scholar 

  • Minajeva A, Kulke M, Fernandez JM and Linke WA (2001) Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils. Biophys J 80: 1442–1451.

    Article  PubMed  CAS  Google Scholar 

  • Oberhauser A, Badilla-Fernandez C, Carrion-Vazquez M and Fernandez J (2002) The mechanical hierarchies of fibronectin observed with single molecule AFM. J Mol Biol 319: 433–447.

    Article  PubMed  CAS  Google Scholar 

  • Oberhauser AF, Marszalek PE, Erickson H and Fernandez J (1998) The molecular elasticity of tenascin, an extracellular matrix protein. Nature 393: 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Paci E and Karplus M (1999) Forced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics simulations. J Mol Biol 288: 441–459.

    Article  PubMed  CAS  Google Scholar 

  • Paci E and Karplus M (2000) Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc Natl Acad Sci USA 97: 6521–6526.

    Article  PubMed  CAS  Google Scholar 

  • Politou AS, Thomas D and Pastore A (1995) The folding and the stability of titin immunoglobulin-like modules, with implications for mechanism of elasticity. Biophys J 69: 2601–2610.

    Article  PubMed  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM and Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276: 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  • Rief M, Gautel M, Schemmel A and Gaub H (1998) The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by AFM. Biophys J 75: 3008–3014.

    Article  PubMed  CAS  Google Scholar 

  • Rief M, Pascual J, Saraste M and Gaub H (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 286: 553–561.

    Article  PubMed  CAS  Google Scholar 

  • Rohs R, Etchebest C and Lavery R (1999) Unraveling proteins: a molecular mechanics study. Biophys J 76: 2760–2768.

    Article  PubMed  CAS  Google Scholar 

  • Schulten K, Schulten Z and Szabo A (1980) Reactions governed by a binomial redistribution process. The ehrenfest urn problem. Physica 100A: 599–614.

    CAS  Google Scholar 

  • Schulten K, Schulten Z and Szabo A (1981) Dynamics of reactions involving diffusive barrier crossing. J Chem Phys 74: 4426–4432.

    Article  CAS  Google Scholar 

  • Socci N, Onuchic J and Wolynes P (1999) Stretching lattice models of protein folding. Proc Natl Acad Sci USA 96: 2031–2035.

    Article  PubMed  CAS  Google Scholar 

  • Soteriou A, Clarke A, Martin S and Trinick J (1993) Titin folding energy and elasticity. Proc R Soc Lond B (Biol Sci.) 254: 83–86.

    Article  CAS  Google Scholar 

  • Szabo A, Schulten K and Schulten Z (1980) First passage time approach to diffusion controlled reactions. J Chem Phys 72: 4350–4357.

    Article  CAS  Google Scholar 

  • Trombitas K, Greaser M, Labeit S, Jin J, Kellermayer M, Helmes M and Granzier H (1998) Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 140: 853–859.

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L and Trinick J (2002) Role of titin in vertebrate striated muscle. Proc R Soc Lond B (Biol. Sci.) 357: 199–206.

    CAS  Google Scholar 

  • Tskhovrebova L, Trinick J, Sleep J and Simmons R (1997) Elasticity and unfolding of single molecules of the giant protein titin. Nature 387: 308–312.

    Article  PubMed  CAS  Google Scholar 

  • Wang K (1996) Titin/connectin and nebulin: giant protein ruler of muscle structure and function. Adv Biophys 33: 123–134.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Schulten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gao, M., Lu, H., Schulten, K. (2003). Unfolding of titin domains studied by molecular dynamics simulations. In: Linke, W.A., Granzier, H., Kellermayer, M.S.Z. (eds) Mechanics of Elastic Biomolecules. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0147-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0147-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3971-0

  • Online ISBN: 978-94-010-0147-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics