Properties of the Fast Sodium Channel and of the Muscarinic Receptor during Development of Embryonic Heart Cells in Ovo and in Vitro

  • Michel Lazdunksi
  • Jean-Francois Renaud
  • Georges Romey
  • Michel Fosset
  • Jacques Barhanin
  • Alain Lombet
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 17)


During ontogenesis of the chick embryonic heart (and also of the mammalian heart) two important properties of the excitable membrane which play a role in the regulation of the rate of the pacemaker system appear to follow a drastic differentiation. These two properties are the physiological expression of the fast Na+ channel inhibitable by tetrodotoxin and the negative inotrope effect due to the interaction of acetylcholine with its muscarinic receptor.


Muscarinic Receptor Cardiac Cell Embryonic Heart Chick Heart Negative Chronotropic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beress, L., Beress, R. and Wunderer, G.: Purification of three polypeptides with neuro and cardiotoxic activity from the sea anemone Anemonia sulcata. Toxicon, 13: 359–367, 1975.PubMedCrossRefGoogle Scholar
  2. Bergman, G., Dubois, J.M., Rojas, E. and Rathmayer, W.: Decreased rate of sodium conductance inactivation in the node of Ranvier induced by a polypeptide toxin from sea anemone. Biochem. Biophy. Acta., 455: 173–184, 1976.CrossRefGoogle Scholar
  3. Birdsall, N.J.M., Burgen, A.S.V. and Hulme, E.C.: The binding of agonists to brain muscarinic receptors. Mol. Pharmacol., 14: 723–736, 1978.PubMedGoogle Scholar
  4. Brockes, J.P. and Hall, Z.W.: Acetylcholine receptors in normal and denervated rat diaphragm muscle II: comparison of junctional and extrajunctional receptors. Biochemistry, 14: 2100–2106, 1975.PubMedCrossRefGoogle Scholar
  5. Carmeliet, E., Horres, C.R., Lieberman, M. and Vereecke, J.S.: Potassium permeability in the chick heart: change with age external K, and valinomycin. In: Developmental and Physiological Correlates of Cardiac Muscle. Lieberman, M. and Sano, T., eds., Raven Press, New York, pp. 103–116, 1975.Google Scholar
  6. Cavey, D., Vincent, J.P. and Lazdunski, M.: The muscarinic receptor of heart cell membranes: Association with agonists, antagonists and antiarrhythmic agents. FEBS Lett., 84: 110–114, 1977.PubMedCrossRefGoogle Scholar
  7. Chicheportiche, R., Balerna, M. Lombet, A., Romey, G. and Lazdunksi, M.: Synthesis of new highly radioactive tetrodotoxin derivatives and their binding properties to the sodium channel. Eur. J. Biochem., 104: 617–625, 1980.PubMedCrossRefGoogle Scholar
  8. Coraboeuf, E., Obrecht-Coutris, G. and Le Douarin, G.: Acetylcholine and the embryonic heart. Amer. J. Cardiol., 25: 285–291, 1970.PubMedCrossRefGoogle Scholar
  9. Delaage, M., Roux, D. and Cailla, H.L.: Recent advances in cyclic nocleotide radioimmunoassay. In: Nato Advanced Study Institute on Cyclic Nocleotides, Paoletti, R., ed., Elsevier-North-Holland Biomedical Press, Amsterdam, 1977.Google Scholar
  10. Devreotis, P.N., and Fambrough, D.M.: Acetylcholine receptor turnover in membranes of developing muscle fibers. J. Cell Biol., 65: 335–358, 1975.CrossRefGoogle Scholar
  11. Fayet, G., Couraud, F., Miranda, F. and Lissitzky, S.: Electro-optical system for monitoring activity of heart cells in culture: Application to the study of several drugs and scorpion toxin. Eur. J. Pharmac., 27: 165–174, 1974.CrossRefGoogle Scholar
  12. Fields, J.Z., Roeske, W.R., Morkin, E. and Yamamura, H.I.: Cardiac muscarinic cholinergic receptors: Biochemical identification and characterization. J. Biol. Chem., 253: 3251–3258, 1978.PubMedGoogle Scholar
  13. Galper, J.B., Klein, W. and Catterall, W.A.: Muscarinic acetylcholine receptors in developing chick heart. J. Biol. Chem., 23: 8692–8699, 1977.Google Scholar
  14. George, W.J., Poison, J.B., O’Toole, A.G. and Goldberg, N.D.: Elevation of gu-anosine 3′, 5′-cyclic phosphate in rate heart after perfusion with acetylcholine. Proc. Natl. Acad. Sci. USA, 66: 398–403, 1970.PubMedCrossRefGoogle Scholar
  15. Hartree, E.F.: Determination of protein: a modification of the lowry method that gives a linear photometric response. Anal. Biochem., 48: 422–427, 1972.PubMedCrossRefGoogle Scholar
  16. Higgings, C.B., Vatner, S.F. and Braunwald, E.: Parasympathetic control of the heart. Pharmacol. Rev., 25: 119–155, 1973.Google Scholar
  17. Kohlhardt, M., Bauer, B., Krause, H. and Fleckenstein, A.: Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibers by use of specific inhibitors. Pfluegers Arch., 335: 309–322, 1972.CrossRefGoogle Scholar
  18. Lee, J.P., Kuo, J.F. and Greengard, P.: Role of muscarinic cholinergic receptors in regulation of guanosine 3′, 5′. Monophosphate content in mammalian brain, heart muscle and intestinal smooth muscle. Proc. Natl. Acad. Sci. USA, 69: 3287–3291, 1972.PubMedCrossRefGoogle Scholar
  19. Loeffelholz, K. and Pappano, A.J.: Ontogenetic changes in pacemaker activity in chick. J. Pharmacol. Exp. Ther., 191: 479–486, 1974.Google Scholar
  20. Lombet, A., Renaud, J.F., Chicheportiche, R. and Lazdunski, M.: A cardiac tet-rodotoxin-binding component: biochemical identification, characterization and properties. Biochemistry 20: 1279–1285, 1981.PubMedCrossRefGoogle Scholar
  21. Lowe, D.A., Bush, B.M.H. and Ripley, S.H.: Pharmacological evidence for “fast” sodium channels in nonspiking neurones. Nature, 274: 289–290, 1978.CrossRefGoogle Scholar
  22. Mallart, A. and Trautmann, A.: Ionic properties of the neuromuscular junction of the frog; effects of denervation and pH. J. Physiol. (London), 234: 553–567, 1973.Google Scholar
  23. McDonald, T.F., Sachs, H.G. and De Haan, R.L.: Development of sensitivity to tetrodotoxin in beating chick embryo hearts, single cells and aggregates. Science, 176: 1248–1250, 1972.PubMedCrossRefGoogle Scholar
  24. McLean, M.J. and Sperelakis, N.: Retention of fully differentiated electrophysiological properties of chick embryonic heart cells in culture. Devel. Biol., 50: 134–141, 1976.CrossRefGoogle Scholar
  25. Nathan, R.D. and De Haan, R.L.: In vitro differentiation of fast Na+ conductance in embryonic heart cell aggregates. Proc. Natl. Acad. Sci. USA, 75: 2776–2780, 1978.PubMedCrossRefGoogle Scholar
  26. Ohta, M., Naharashi, T. and Keeler, R.F.: Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons. J. Pharmacol. Exp. Ther., 184: 143–154, 1973.Google Scholar
  27. Pappano, A.J.: Sodium-dependent depolarization of non-innervated embryonic chick heart by acetylcholine. J. Pharmacol. Exp. Ther., 180: 340–350, 1972.PubMedGoogle Scholar
  28. Pappano, A.J. and Loeffelholz, K.: Ontogenesis of adrenergic and cholinergic neuroeffector transmission in chick embryo heart. J. Pharmacol. Exp. Ther., 191: 468–478, 1974.PubMedGoogle Scholar
  29. Rathamayer, W. and Beress, L.: The effect of toxins from Anemonia sulcata (co-elenterata) on neuromuscular transmission and nerve action potentials in the crayfish (Astacus Leptodactylus). J. Comp. Physiol., 109: 373–382, 1976.CrossRefGoogle Scholar
  30. Renaud, J.F.: Use of cell cultures as tool to elucidate physiological, pharmacological and biochemical membrane properties of the embryonic heart. Biol. Cellulaire, 37: 97–104, 1980.Google Scholar
  31. Renaud, J.F., Barhanin, J., Cavey, D., Fosset, M. and Lazdunski, M.: Comparative properties of in ovo and in vitro differentiation of the muscarinic cholinergic receptor in embryonic heart cells. Devel. Biol., 78: 184–200, 1980.CrossRefGoogle Scholar
  32. Reuter, H.: Divalent cations as charge carriers in excitable membranes. Prog. Biophys. Mol. Biol., 26: 1–43, 1973.PubMedCrossRefGoogle Scholar
  33. Romanoff, A.L.: In: The Avian Embryo: Structure and Functional Development, McMillan Company, New York, 1960.Google Scholar
  34. Romey, G. and Lazdunski, M.: Scorpion and sea anemone neurotoxins actions on axonal membrane. 5th International Biophysics Congress, Copenhagen, 503, 1975.Google Scholar
  35. Romey, G., Abita, J.P., Schweitz, H., Wunderer, G. and Lazdunski, M.: Sea anemone toxin: a tool to study molecular mechanisms of nerve conduction and excitation-secretion coupling. Proc. Natl. Acad. Sci. USA, 73: 4055–4059, 1976.PubMedCrossRefGoogle Scholar
  36. Romey, G., Jacques, Y., Schweitz, H., Fosset, M. and Lazdunksi, M.: The sodium channel in non-impulsive cells. Interaction with specific neurotoxins. Biochim. Biophys. Acta, 556: 344–353, 1979.PubMedCrossRefGoogle Scholar
  37. Romey, G., Renaud, J.F., Fosset, M. and Lazdunksi, M.: Pharmacological properties of the interaction of a sea anemone polypeptide toxin with cardiac cells in culture. J. Pharmacol. Exp. Ther., 213: 607–615, 1980.PubMedGoogle Scholar
  38. Rougier, O., Vassort, G. and Stampfi, R.: Voltage-clamp experiments frog atrial heart muscle fibers wwith the sucrose-gap technique. Pfluegers Arch., 301: 91–108, 1968.CrossRefGoogle Scholar
  39. Sastre, A., Gray, D.B. and Lane, M.A.: Muscarinic cholinergic binding sites in the developing avian heart. Devel. Biol., 55: 201–205, 1977.CrossRefGoogle Scholar
  40. Shigenobu, K. and Sperelakis, N.: Development of sensitivity to tetrodotoxin of chick embryonic hearts with age. J. Mol. Cell. Cardiol., 3: 271–286, 1971.PubMedCrossRefGoogle Scholar
  41. Shigenobu, K., Schneider, J.A. and Sperelakis, N.: Blockade of slow Na+ and Ca++ currents in myocardial cells by verapamil. J. Pharmacol. Exp. Ther., 190: 280–288, 1974.PubMedGoogle Scholar
  42. Sperelakis, N. and Lehmkuhl, D.: Insensitivity of cultured chick heart cells to autonomic agents and tetrodotoxin. Am. J. Physiol., 209: 693–698, 1965.PubMedGoogle Scholar
  43. Sperelakis, N. and Pappano, A.J.: Depolarization of cultured heart cells by a lipid soluble acetylcholine analoque. Am. J. Physiol., 217: 625–629, 1969.PubMedGoogle Scholar
  44. Sperelakis, N. and Shigenobu, K.: Changes in membrane properties of chick embryonic heart during development. J. Gen. Physiol. 60: 430–453, 1972.PubMedCrossRefGoogle Scholar
  45. Sperelakis, N., Shigenobu, K. and McLean, M.J.: Membrane cation channels: changes in developing hearts, in cell culture and in organ culture. In: Developmental and Physiological Correlates of Cardiac Muscle. Lieberman, M. and Sano, T., eds., Raven Press, New York, pp. 209–234, 1975.Google Scholar
  46. Trautwein, W.: Membrane currents in cardiac muscle fibers. Physiol. Rev., 53: 793–835, 1973.Google Scholar
  47. Ulbricht, W.: The effect of veratridine on excitable membranes of nerve and muscle. Ergeb. Physiol. Biol. Chem. Exp. Pharm., 61: 18–71, 1969.CrossRefGoogle Scholar
  48. Wunderer, G., Fritz, H., Wachter, E. and Machleidt, W.: Amoni-acid sequence of a coelenterate toxin: Toxin II from anemonia sulcata. Eur. J. Biochem., 68: 193–198, 1976.PubMedCrossRefGoogle Scholar
  49. Young, J.M.: Desensitization and agonist binding to cholinergic receptors in intestinal smooth muscle. FEBS Lett., 46: 354–356, 1974.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague 1982

Authors and Affiliations

  • Michel Lazdunksi
  • Jean-Francois Renaud
  • Georges Romey
  • Michel Fosset
  • Jacques Barhanin
  • Alain Lombet

There are no affiliations available

Personalised recommendations