Skip to main content

Gap Junction Structure in Coupled and Uncoupled Conditions

  • Chapter
Cardiac Rate and Rhythm

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 17))

  • 83 Accesses

Abstract

Activities such as heart contraction, uterus contractures at labor, simultaneous firing of groups of neurons, as well as a variety of cooperative cellular functions would be ineffective in the absence of a system for direct cell-to-cell communication. This system, known as cell coupling, relies on the presence of specialized cell junctions called gap junctions, nexuses, maculae communicantes, coupling junctions, etc. (Peracchia, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcalá, J., Kuszak, J., Katar, M., Bradley, R.H. and Maisel, H.: Relationship of intrinsic and peripheral proteins to chicken lens gap junction morphology. J. Cell Biol., 83 (2, pt. 2): 269a, 1979.

    Google Scholar 

  • Alcalá, J., Lieska, N. and Maisel, H.: Protein composition of bovine lens cortical fiber cell membranes. Exp. Eye Res., 21: 381–595, 1975.

    Article  Google Scholar 

  • Asada, Y. and Bennett, M.V.L.: Experimental alteration of coupling resistance at an electrotonic synapse. J. Cell Biol., 49: 159–172, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, K.M.: The fine structure of healing over in mammalian cardiac muscle. J. Mol. Cell Cardiol., 9: 959–966, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, K.M.: Cardiac gap junction configuration after an uncoupling treatment as a function of time. J. Cell Biol., 82: 66–75, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Barr, L., Dewey, M.M. and Berger, W.: Propagation of action potentials and the structure of the nexus in cardiac muscle. J. Gen. Physiol., 48: 797–823, 1965.

    Article  PubMed  CAS  Google Scholar 

  • Barr, L., Berger, W. and Dewey, M.M.: Electrical transmission at the nexus between smooth muscle cells. J. Gen. Physiol., 51: 347–368, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Benedetti, E.L. and Emmelot, P.: Hexagonal array of subunits in tight junctions separated from isolated rat liver plasma membranes. J. Cell Biol., 38: 15–24, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M.V.L.: Function of electrotonic junctions in embryonic and adult tissue. Fed. Proc., 32: 65–75, 1973.

    PubMed  CAS  Google Scholar 

  • Bennett, M.V.L., Dunham, B. and Pappas, G.D.: Ion fluxes through a “tight junction”. J. Gen. Physiol., 50: 1094a, 1976.

    Google Scholar 

  • Bernardini, G., Peracchia, C. and Venosa, A.: Uncoupling of lens fibers. J. Cell Biol., 87 (2, pt. 2): 207a, 1980.

    Google Scholar 

  • Branton, D.: Fracture faces of frozen membranes. Proc. Natl. Acad. Sci. U.S.A., 55: 1048–1056, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Caspar, D.L.D., Goodenough, D.A., Makowski, L. and Phillips, W.C.: Gap junction structures. I. Correlated electron microscopy and X-ray diffraction. J. Cell Biol., 74: 605–628, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, G. and Isenberg, G.: Decoupling of heart muscle cells: correlation with increased cytoplasmic calcium and with changes of nexus ultrastructure. J. Memb. Biol., 53: 63–75, 1980.

    Article  CAS  Google Scholar 

  • DeHaan, R.L. and Hirakow, R.: Synchronization of pulsation rates in isolated cardiac myocytes. Exp. Cell Res., 70: 214–220, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Délèze, J.: Calcium ions and the healing over of heart fibers. In: Electrophysiology of the Heart, Taccardi B. and Marchetti, G., eds., Pergamon Press, Oxford, England, pp. 147–148, 1965.

    Google Scholar 

  • Délèze, J.: The recovery of resting potential and input resistance in sheep heart injured by knife or Laser. J. Physiol. (London), 208: 547–562, 1970.

    Google Scholar 

  • DeMello, W.C.: Effect of intracellular injection of La+++ and Mn++ on electrical coupling of heart cells. Cell Biol. Int. Rep., 3: 113–119, 1979.

    Article  CAS  Google Scholar 

  • DeMello, W.C.: Intercellular communication and junctional permeability. In: Membrane Structure and Function, Vol.3, Bittar, E.E., ed., John Wiley and Sons, Inc., New York, pp. 127–170, 1980.

    Google Scholar 

  • DeMello, W.C., Motta, G. and Chapeau, M.: A study on the healing over of myocardial cells of toads. Circ. Res., 24: 475–487, 1969.

    CAS  Google Scholar 

  • Dewey, M.M. and Barr, L.: Intercellular connection between smooth muscle cells: the Nexus. Science (Wash., D.C.), 137: 670–672, 1962.

    Article  CAS  Google Scholar 

  • Dreifuss, J.J., Girardier, L. and Forssman, W.G.: Etude de la propagation de l’excitation dans le ventricule de rat au moyeu de solutions hypertoniques. Pfluegers Arch., 292: 13–33, 1966.

    Article  CAS  Google Scholar 

  • Dunia, I., Sen Gosh, C., Benedetti, E.L., Zweers, A. and Bloemendal, H.: Isolation and protein pattern of eye lens fiber junction. FEBS Lett., 45: 139–144, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Engelman, T.W.: Vergleichende Untersuchungen zur Lehre von der Muskel- und Nervenelectrizitaet. Pfluegers Arch., 15: 116–148, 1877.

    Article  Google Scholar 

  • Evans, W.H. and Gurd, J.W.: Preparation and properties of nexuses and lipid enriched vesicles from mouse liver pi asm am em bran es. Biochem. J., 128: 691–700, 1972.

    PubMed  CAS  Google Scholar 

  • Farquhar, M.G. and Palade, G.E.: Cell junctions in amphibian skin. J. Cell Biol., 25: 263–291, 1965.

    Article  Google Scholar 

  • Flagg-Newton, J.L., Simpson, I. and Loewenstein, W.R.: Permeability of the cell-to-cell membrane channels in mammalian cell junction. Science, 205: 404–407, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Gilula, N.B., Reeves, O.R. and Steinbach, A.: Metabolic coupling, ionic coupling and cell contacts. Nature (Lond.), 235: 262–265, 1972.

    Article  CAS  Google Scholar 

  • Goodenough, D.A.: Lens gap junctions: A structural hypothesis for non-regulated low resistance intercellular pathways. Invest. Ophtalmol., 18: 1104–1122, 1979.

    CAS  Google Scholar 

  • Goodenough, D.A. and Stoeckenius, W.: The isolation of mouse hepatocyte gap junctions. Preliminary chemical characterization and X-ray diffraction. J. Cell Biol., 54: 646–656, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Goshima, K.: Synchronized beating of and electrotonic transmission between myocardial cell, mediated by heterotypic strain cells in monolayer culture. Exp. Cell Res., 63: 124–130, 1969.

    Article  Google Scholar 

  • Goshima, K.: Formation of nexuses and electrotonic transmission between myocardial and FL cells in monolayer cultures. Exp. Cell Res., 63: 124–130, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Hama, K. and Saito, K.: Gap junctions between the supporting cells in some acoustico-vestibular receptors. J. Neurocytol., 6: 1–12, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Hanna, R.B., Keeter, J.S. and Pappas, G.D.: The fine structure of a rectifying electrotonic synapse. J. Cell Biol., 79: 764–773, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, D., Eibl, H. and Weber, K.: Structure and biochemistry of mouse hepatic gap junctions. J. Mol. Biol., 132: 193–218, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Hertzberg, E.L. and Gilula, N.B.: Isolation and characterization of gap junctions from rat liver. J. Biol. Chem., 254: 2138–2147, 1979.

    PubMed  CAS  Google Scholar 

  • Hyde, A., Blondell, B., Matter, A., Cheneval, J.P., Filloux, B. and Girardier, L.: Homo and heterocellular junctions in cell cultures: an electrophysiological and morphological study. Prog. Brain Res., 31: 283–311, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Imanaga, I.: Cell-to-cell diffusion of procion yellow in sheep and calf Purkinje fibers. J. Memb. Biol., 16: 381–388, 1974.

    Article  CAS  Google Scholar 

  • Karrer, H.E.: Cell interconnections in normal human cervical epithelium. J. Biophys. Biochem. Cytol., 7: 181–183, 1960a.

    Article  PubMed  CAS  Google Scholar 

  • Karrer, H.E.: The striated musculature of blood vessels. II. Cell interconnections and cell surface. J. Biophys. Biochem. Cytol., 8: 135–150, 1960b.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura, K. and Konishi, T.: Ultrastructure of the cell junction of heart muscle with special reference to its functional significance in excitation conduction and in the concept of “disease of intercalated discs”. Japan. Circ. J., 31: 1533–1543, 1967.

    CAS  Google Scholar 

  • Kensler, R.W. and Goodenough, D.A.: Isolation of mouse myocardial gap junctions. J. Cell Biol., 86: 755–764, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Kistler, J. and Bullivant, S.: Lens gap junctions and orthogonal arrays are unrelated. FEBS Lett., 111: 73–78, 1980a.

    Article  PubMed  CAS  Google Scholar 

  • Kistler, J. and Bullivant, S.: The connexon order in isolated lens gap junctions. J. Ultrastruct. Res., 72: 27–38, 1980b.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, T.S., Beers, W.H. and Gilula, N.B.: Transmission of hormonal stimulation by cell-to-cell communication. Nature (Lond.) 272: 501–506, 1978.

    Article  CAS  Google Scholar 

  • Ledbetter, M.L. and Lubin, M.: Transfer of potassium. A new measure of cell-cell coupling. J. Cell Biol., 80: 150–165, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein, W.R.: Permeability of membrane junctions. Ann. N.Y. Acad. Sci., 137: 441–472, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein, W.R.: Permeable junctions. Cold Spring Harbor Symp. Quant. Biol., 40: 49–63, 1975.

    Google Scholar 

  • Loewenstein, W.R., Nakas, M. and Socolar, S.J.: Junctional membrane uncoupling: permeability transformations at a cell membrane junction. J. Gen. Physiol., 50: 1865–1891, 1967.

    Article  PubMed  CAS  Google Scholar 

  • Makowski, L., Caspar, D.L.D., Phillips, W.C. and Goodenough, D.A.: Gap junction structures. II. Analysis of the X-ray diffraction data. J. Cell Biol., 74: 629–645, 1977.

    Article  PubMed  CAS  Google Scholar 

  • McNutt, N.S. and Weinstein, R.S.: The ultrastructure of the nexus. A correlated thin-section and freeze-cleave study. J. Cell Biol., 47: 666–688, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Meda, P., Perrelet, A. and Orci, L.: Gap junctions and beta-cell function. Horm. Metab. Res. Suppl. (in press), 1980.

    Google Scholar 

  • Nakas, M., Higashino, S. and Loewenstein, W.R.: Uncoupling of an epithelial cell membrane junction by calcium-ion removal. Science (Wash., D.C.), 151: 89–91, 1966.

    Article  CAS  Google Scholar 

  • Pappas, G.D., Asada, Y. and Bennett, M.V.L.: Morphological correlates of increased coupling resistance at an electrotonic synapse. J. Cell Biol., 49: 173–188, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Payton, B.W., Bennett, M.V.L. and Pappas, G.D.: Temperature-dependence of resistance at an electrotonic synapse. Science (Wash., D.C.), 165: 594–597, 1969a.

    Article  CAS  Google Scholar 

  • Payton, B.W., Bennett, M.V.L. and Pappas, G.D.: Permeability and structure of junctional membranes at an electrotonic synapse. Science (Wash., D.C.), 166: 1641–1643, 1969b.

    Article  CAS  Google Scholar 

  • Peracchia, C.: Low resistance junctions in crayfish. I. Two arrays of globules in junctional membranes. J. Cell Biol., 57: 54–65, 1973a.

    Article  PubMed  CAS  Google Scholar 

  • Peracchia, C.: Low resistance junctions in crayfish. II. Structural details and further evidence for intercellular channels by freeze-fracture and negative staining. J. Cell Biol., 57: 66–76, 1973b.

    Article  PubMed  CAS  Google Scholar 

  • Peracchia, C.: A structure-function correlation in gap junctions of crayfish. Proc. Int. Cong. Electron Microsc., 8th Canberra, II, 226–227, 1974.

    Google Scholar 

  • Peracchia, C.: Gap junctions: structural changes after uncoupling procedures. J. Cell Biol., 72: 628–641, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Peracchia, C.: Calcium effects on gap junction structure and cell coupling. Nature (London), 271: 669–671, 1978.

    Article  CAS  Google Scholar 

  • Peracchia, C.: Structural correlates of gap junction permeation. Int. Rev. Cytol., 66: 81–146, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Peracchia, C., Bernardini, G. and Peracchia, L.L.: Uncoupling mechanism: a hypothesis. J. Cell Biol., 83: (2, pt. 2): 86a, 1979.

    Google Scholar 

  • Peracchia, C. and Dulhunty, A.F.: Gap junctions: structural changes associated with changes in permeability. J. Cell Biol., 63: (2, pt. 2): 263a, 1979.

    Google Scholar 

  • Peracchia, C. and Dulhunty, A.F.: Low resistance junctions in crayfish: structural changes with functional uncoupling. J. Cell Biol., 70: 419–439, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Peracchia, C. and Peracchia, L.L.: Gap junction dynamics: reversible effects of divalent cations. J. Cell Biol., 87: 708–718, 1980a.

    Article  PubMed  CAS  Google Scholar 

  • Peracchia, C. and Peracchia, L.L.: Gap junction dynamics: reversible effects of hydrogen ions. J. Cell Biol., 87: 719–727, 1980b.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, O.H., Findlay, I., Meda, P., Laugier, R. and Iwatsuki, N.: Control of cell-to-cell communication in exocrine glands by the intracellular hydrogen ion concentration. In: Hydrogen Ion Transport in Epithelia, Schulz, I., ed., Elsevier (North Holland Press), pp. 227–234, 1980.

    Google Scholar 

  • Pitts, J.D.: Molecular exchange and growth control in tissue culture. In: Growth Control in Cultures, Wolstenholme, G.E.W. and Knight, J., eds. Churchill Livingstone, London, pp. 89–105, 1971.

    Google Scholar 

  • Pitts, J.D.: Direct communication between animal cells. In: International Cell Biology, Brinkley, B.R. and Porter, K.R., eds., The Rockefeller University Press, New York, pp. 43–49, 1977.

    Google Scholar 

  • Politoff, A. and Pappas, G.D.: Mechanism of increase in coupling resistance at electrotonic synapses of the crayfish septate axon. Anat. Record., 172: 384–385, 1972.

    Google Scholar 

  • Politoff, A., Pappas, G.D. and Bennett, M.V.L.: Cobalt ions cross an electrotonic synapse if cytoplasmic concentration is low. Brain Res., 76: 343–346, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Rae, J.L.: The movement of procion dye in the crystalline lens. Invest. Ophtalmol. Vis. Sci., 13: 147–150, 1974.

    CAS  Google Scholar 

  • Raviola, E., Goodenough, D.A. and Raviola, G.: The native structure of gap junctions rapidly frozen at 4 °K. J. Cell Biol., 79 (2, pt. 2): 229a, 1978.

    Google Scholar 

  • Revel, J.P. and Karnovsky, M.J.: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol., 33: C7–C12, 1967.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, J.D.: The occurrence of a subunit pattern in the unit membranes of club endings in Mauthner cell synapses in Goldfish brains. J. Cell Biol., 19: 201–222, 1963.

    Article  PubMed  CAS  Google Scholar 

  • Rothschuh, K.E.: Ueber den funktionellen Aufbau des Herzens aus elektro physiologischen Elementen und ueber den Mechanismus der Erregungsleitung im Herzen. Pfluegers Arch., 253: 238–251, 1951.

    Article  CAS  Google Scholar 

  • Sjostrand, F.S., Andersson-Cedergren, E. and Dewey, M.M.: The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. J. Ultrastruct. Res., 1: 271–287, 1958.

    Article  PubMed  CAS  Google Scholar 

  • Staehelin, L.A.: Structure and function of intercellular junctions. Int. Rev. Cytol., 39: 191–283, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R.W. and Weingart, R.: Cyclic-AMP: cell-to-cell movement and inotropic effect in ventricular muscle, studied by a cut-end method. J. Physiol. (London), 242: 95P–96P, 1974.

    CAS  Google Scholar 

  • Turin, L. and Warner, A.E.: Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature (London), 270: 56–57, 1977.

    Article  CAS  Google Scholar 

  • Turin, L. and Warner, A.E.: Intracellular pH in early Xenopus embryos: its effect on current flow between blastomeres. J. Physiol. (London), 300: 489–504, 1980.

    CAS  Google Scholar 

  • Unwin, P.N.T. and Zampighi, G.: Structure of the junction between communicating cells. Nature (London), 283: 545–549, 1980.

    Article  CAS  Google Scholar 

  • Weidmann, S.: The electrical constants of Purkinje fibres. J. Physiol. (London), 118: 348–360, 1952.

    CAS  Google Scholar 

  • Weidmann, S.: The diffusion of radiopotassium across intercalated discs of mammalian cardiac muscle. J. Physiol. (London), 187: 323–343, 1966.

    CAS  Google Scholar 

  • Weingart, R.: The permeability to tetraethylammonium ions of the surface membrane and the intercalated disks of sheep and calf myocardium. J. Physiol. (London), 240: 741–762, 1974.

    CAS  Google Scholar 

  • Weingart, R.: The actions of ouabain on intercellular coupling and conduction velocity in mammalian ventricular muscle. J. Physiol. (London), 264: 341–365, 1977.

    CAS  Google Scholar 

  • Zampighi, G. and Unwin, P.N.T.: Two forms of isolated gap junctions. J. Mol. Biol., 135: 451–464, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Zampighi, G., Corless, J.M. and Robertson, J.D.: On gap junction structure. J. Cell Biol., 86: 190–198, 1980.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Peracchia, C. (1982). Gap Junction Structure in Coupled and Uncoupled Conditions. In: Bouman, L.N., Jongsma, H.J. (eds) Cardiac Rate and Rhythm. Developments in Cardiovascular Medicine, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7535-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7535-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7537-8

  • Online ISBN: 978-94-009-7535-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics