Skip to main content

Immunobiological diversity of metastatic cells

  • Chapter
Tumor Invasion and Metastasis

Part of the book series: Developments in Oncology ((DION,volume 7))

Abstract

The analysis of antigenic and immunogenic properties of tumor cells and of mechanisms of antitumor response should furnish the basis for the investigation of methods aimed at immunotherapy of malignant diseases. One may expect that such methods will be especially effective in the prevention of metastatic progression following surgical removal of the primary tumor mass. Immunotherapeutic approaches are based either on nonspecific stimulation of the host’s immune system or on the specific immunization of the organism against tumor cells originating in the surgically removed tumor. These immunization procedures are expected to stimulate the development of cytotoxic lymphocytes or antibodies which are capable of inhibiting tumor growth and destroying metastatic tumor cells. Another experimental approach to immunotherapy is based on the adoptive transfer to the diseased host of lymphocytes sensitized in vitro against tumor cells [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenberg S, Terry W: Passive immunotherapy of cancer in animals and man. Adv Cancer Res 25:323–388, 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Fidler I, Gersten D, Hart I: The biology of cancer invasion and metastasis. Adv Cancer Res 28:149–250, 1978.

    Article  PubMed  CAS  Google Scholar 

  3. Fidler I, Nicolson G: Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J Natl Cancer Inst 57:1199–1202, 1976.

    PubMed  CAS  Google Scholar 

  4. Liotta L, Tryggvason K, Garbisa S, Gehron Robey P, Murray J: Interaction of metastatic tumor cells with basement membrane collagen. In: Cancer campaign, Vol. 4, Metastatic tumor growth. Grundmann, E (ed). New York: Gustav Fisher Verlag, 1980, pp 21–30.

    Google Scholar 

  5. Gorelik E, Fogel M, Segal S, Feldman M: Tumor-associated antigenic differences between the primary and the descendant metastatic tumor cell populations. J Supramol Struct 12:385–402, 1979.

    Article  PubMed  CAS  Google Scholar 

  6. Trope C: Different sensitivity to cytostatic drugs of primary tumor and metastasis of the Lewis carcinoma. Neoplasma 22:171–180, 1975.

    PubMed  CAS  Google Scholar 

  7. Nicolson G: Cell surfaces and blood-borne tumor metastasis. In: Cancer invasion and metastasis: biological mechanisms and therapy. Day SB et al. (eds). New York: Raven Press, 1977, pp 168–174.

    Google Scholar 

  8. Hart L, Talmage J, Fidler I: Metastatic behavior of a murine reticulum cell sarcoma exhibiting organ-specific growth. Cancer Res 41:1281–1287, 1981.

    PubMed  CAS  Google Scholar 

  9. Rabotti G: Ploidy of primary and metastatic human tumors. Nature 183:1276–1277, 1959.

    Article  PubMed  CAS  Google Scholar 

  10. Chu E, Malmgren R: Microspectrophotometric determination of deoxyribonucleic acid in primary and metastatic mouse mammary tumors. J Natl Cancer Inst 27:217–220, 1961.

    PubMed  CAS  Google Scholar 

  11. Chatterjee S, Kim U: Fucosyl-transferase activity in metastasizing and nonmetastasizing rat mammary carcinomas. J Natl Cancer Inst 61:151–162, 1978.

    PubMed  CAS  Google Scholar 

  12. Gershon R, Carter R: Facilitation of metastatic growth by antilymphocyte serum. Nature 226:368–370, 1970.

    Article  PubMed  CAS  Google Scholar 

  13. Jones P, Castro J: Immunological mechanisms in metastatic spread and the antimetastatic effects of C. parvum. Br J Cancer 35:519–527, 1977

    Article  PubMed  CAS  Google Scholar 

  14. Alexander P, Eccles S: The contribution of immunological factors to the control of metastatic spread of sarcomata in rats. In: Critical factors in cancer immunology, Vol. 10, Shultz J, Leif E (eds). New York: Academic Press 1975, pp 159–171.

    Google Scholar 

  15. Fogel M, Gorelik E, Segal S, Feldman M: Differences in cell surface antigens of tumor metastases and those of the local tumor. J Natl Cancer Inst 62:585–588, 1979.

    PubMed  CAS  Google Scholar 

  16. Gorelik E, Fogel M, Feldman M, Segal S: Differences in resistance of metastatic tumor cells and cells from local tumor growth to cytotoxicity of natural killer cells. J Natl Cancer Inst 63:1397–1404, 1979.

    PubMed  CAS  Google Scholar 

  17. Gorelik E, Feldman M, Segal S: Selection of 3LL tumor subline resistant to natural effector cells concomitantly selected for increased metastatic potency. Immunol Immunother Cancer (in press).

    Google Scholar 

  18. Baetselier P, Katzav S, Gorelik E, Feldman H, Segal S: Differential expression of the H-2 gene products in tumour cells is associated with their metastatogenic properties. Nature 288:179–181, 1980.

    Article  PubMed  Google Scholar 

  19. Fogel M, Segal S, Gorelik E, Feldman M: Specific cytotoxic lymphocytes against syngeneic, but not xenogeneic, serum. Int J Cancer 22:329–334, 1978

    Article  PubMed  CAS  Google Scholar 

  20. Sugarbaker E, Cohen A: Altered antigenicity in spontaneous pulmonary metastases from an antigenic murine sarcoma. Surgery 72:155–161, 1972.

    PubMed  CAS  Google Scholar 

  21. Schirrmacher V, Bosslet K, Shantz G, Clauer K, Hubsch D: Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. IV. Antigenic differences between a metastasizing variant and the parental tumor line revealed by cytotoxic T lymphocytes. Int J Cancer 23:245–252, 1979.

    Article  PubMed  CAS  Google Scholar 

  22. Herberman R, Holden H: Natural cell-mediated immunity. Adv Cancer Res 7:305–377, 1978.

    Article  Google Scholar 

  23. Kiessling R, Wigzell H: An analysis of the murine NK cell as to structure, function and biological relevance. Immunol Rev 44:166–208, 1979.

    Article  Google Scholar 

  24. Liotta L, Vembu D, Saini R, Boone C: In vivo monitoring of the death rate of artificial murine pulmonary micrometastases. Cancer Res 38:1231–1236, 1978.

    PubMed  CAS  Google Scholar 

  25. Riccardi C, Puccetti P, Santoni A, Herberman R: Rapid In vivo assay of mouse natural killer (NK) cell activity. J Natl Cancer Inst 63:1041–1045, 1979.

    PubMed  CAS  Google Scholar 

  26. Hanna N, Fidler I: The role of natural killer cells in the destruction of circulating tumor emboli. J Natl Cancer Inst 65:801–809, 1980.

    PubMed  CAS  Google Scholar 

  27. Hanna N, Fidler I, Relationship between metastatic potential and resistance to NK cell mediated cytotoxicity in three murine tumor systems. J Natl Cancer Inst 66:1183–1190, 1981.

    Google Scholar 

  28. Gorelik E, Fogel M, Segal S, Feldman M: Antigenic differences between local 3LL tumor and its metastases. III. Difference in growth rate in syngeneic, semiallogeneic and allogeneic hosts. Ninth Annual Meeting of the Israel Immunological Society 35: 1978.

    Google Scholar 

  29. Isakow N, Feldman M, Segal S: Genetic regulation of metastatic progression: the development of pulmonary metastases of the 3LL lung carcinoma is controlled by both non H-2 gene(s) and gene(s) linked to the H-2D region of the mouse MHC. Transp Proc 13:778–782, 1981.

    Google Scholar 

  30. Brodt P, Gordon J: Anti-tumor immunity in B lymphocyte-deprived mice. I. Immunity to a chemically induced tumor. J Immunol 121:359–365, 1978.

    PubMed  CAS  Google Scholar 

  31. Zinkernagel R, Doherty P: H-2 compatibility requirement for T cell mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T cell specificities are associated with structures coded for in H-2K or H-2D. J Exp Med 141:1427–1436, 1975.

    Article  PubMed  CAS  Google Scholar 

  32. Meruelo D, Nimelstein S, Jones P, Lieberman M, McDevit H: Increased synthesis and expression of H-2 antigens on thymocytes as a result of radiation leukemia virus infection: a possible mechanism for H-2 linked control of virus-induced neoplasia. J Exp Med 147:470–487, 1978.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague/Boston/London

About this chapter

Cite this chapter

Gorelik, E., Fogel, M., De Baetselier, P., Katzav, S., Feldman, M., Segal, S. (1982). Immunobiological diversity of metastatic cells. In: Liotta, L.A., Hart, I.R. (eds) Tumor Invasion and Metastasis. Developments in Oncology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7511-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7511-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7513-2

  • Online ISBN: 978-94-009-7511-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics