Skip to main content

Cell surface properties of metastatic tumor cells

  • Chapter
Tumor Invasion and Metastasis

Part of the book series: Developments in Oncology ((DION,volume 7))

Abstract

Since the interaction of tumor cells with their environment is mediated by cell surface constituents, this structure is thought to play one of the most important roles in metastasis. Modifications in cell surface properties have been described in detail and compared in particular, between transformed cells and their untransfor- med counterparts. In these systems modifications at the cell surface have generally correlated with neoplastic transformation (see reviews by Hynes [1], Nicolson [2] and Roblin et al. [3]); however, few of these changes are probably relevant to metastasis [2, 4]. Using the animal model systems described elsewhere in this volume (Chapter 1), it has been possible to examine in detail cell surface properties and their potential involvement in metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hynes RO: Cell surface proteins and malignant transformation. Biochim Biophys Acta 458:3–107, 1976.

    Google Scholar 

  2. Nicolson GL: Transmembrane control of the receptors on normal and tumor cells. II. Surface changes associated with transformation and malignancy. Biochim Biophys Acta 458:1–72, 1976.

    PubMed  CAS  Google Scholar 

  3. Roblin R, Chou I-N, Black PH: Proteolytic enzymes, cell surface changes and viral transformation. Adv Cancer Res 22:203–259, 1975.

    CAS  Google Scholar 

  4. Nicolson GL, Birdwell CR, Brunson KW, Robbins JC, Beattle G, Fidler IJ: Cell interactions in the metastatic process: some cell surface properties associated with successful blood-borne tumor spread. In: Cell and tissue interactions, Lash J, Burger MM (eds). New York: RavenPress, 1977, pp 225–241.

    Google Scholar 

  5. Hagmar B, Norrby K: Influence of cultivation, trypsinization and aggregation on the transplantability of melanoma B16 cells. Int J Cancer 11:663–675, 1973.

    PubMed  CAS  Google Scholar 

  6. Sinha BK, Goldenberg GJ: The effect of trypsin and neuraminidase on the circulation and organ distribution of tumor cells. Cancer 34:1956–1961, 1974.

    PubMed  CAS  Google Scholar 

  7. Fidler IJ: General considerations for studies of experimental cancer metastasis. Meth Cancer Res 15:399–439, 1978.

    CAS  Google Scholar 

  8. Poste G, Nicolson GL: Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc Natl Acad Sci USA 77:399–403,1980.

    PubMed  CAS  Google Scholar 

  9. Weiss L, Subject JR, Poste G: Some electrical properties of the peripheries of murine 3T3 cells with respect to viral transformation and reversion. Int J Cancer 16:914–921, 1975.

    PubMed  CAS  Google Scholar 

  10. Klein G, Klein E: Conversion of solid neoplasms into ascites tumors. Ann NY Acad Sci 63:640–661, 1956.

    PubMed  CAS  Google Scholar 

  11. Weiss L: Membrane dynamics and the metastasis of cancer. Cell Biophys 1:331–343, 1979.

    Google Scholar 

  12. Grdina DJ, Hittelman WM, White RA, Meistrich ML: Relevance of density, size and DNA content of tumour cells to the lung colony assay. Br J Cancer 36:659–669, 1977.

    PubMed  CAS  Google Scholar 

  13. Baniyash M, Netanel T, Witz IP: Differences in cell density associated with differences in lung colonizing ability of B16 melanoma cells. Cancer Res 41:433–437, 1981.

    PubMed  CAS  Google Scholar 

  14. Miner KM, Walter H, Nicolson GL: Subfractionation of malignant variants of metastatic murine lymphosarcoma cells by countercurrent distribution in two-polymer aqueous phases. Biochemistry 20:6244–6250, 1981.

    PubMed  CAS  Google Scholar 

  15. Nicolson GL: The interactions of lectins with animal cell surfaces. Int Rev Cytol 39:89–190, 1974.

    PubMed  CAS  Google Scholar 

  16. Raz A, McLellan WL, Hart IR, Bucana CD, Hoyer LC, Sela BA, Dragsten P, Fidler IJ: Cell surface properties of B16 melanoma variants with differing metastatic potential. Cancer Res 40:1645–1651, 1980.

    PubMed  CAS  Google Scholar 

  17. Irimura T, Gonzalez R, Nicolson GL: Effects of tunicamycin on B16 metastatic melanoma cell surface glycoproteins and blood-borne arrest and survival properties. Cancer Res 41:3411–3418, 1981.

    PubMed  CAS  Google Scholar 

  18. Nicolson GL, Reading CL, Brunson KW: Blood-borne tumor metastasis: some properties of selected tumor cell variants of differing malignancies. In: Tumor progression, Crispen RG (ed). Amsterdam: Elsevier North-Holland, 1980, pp 31–48.

    Google Scholar 

  19. Reading CL, Brunson KW, Torrianni M, Nicolson GL: Malignancies of metastatic murine lymphosarcoma cell lines and clones correlate with decreased cell surface display of RNA tumor virus envelope glycoprotein gp70. Proc Natl Acad Sci USA 77:5943–5947, 1980.

    PubMed  CAS  Google Scholar 

  20. Tao T-W, Burger MM: Non-metastasising variants selected from metastasising melanoma cells. Nature 270:437–438, 1977.

    PubMed  CAS  Google Scholar 

  21. Finne J, Tao T-W, Burger MM: Carbohydrate changes in glycoproteins of a poorly metastasizing wheat germ agglutinin-resistant melanoma clone. Cancer Res 40:2580–2587, 1980.

    PubMed  CAS  Google Scholar 

  22. Talmadge JE, Starkey JR, Stanford DR: In vitro characteristics of metastatic variant subclones of restricted genetic origin. J Supramol Struct 15:139–151, 1981.

    CAS  Google Scholar 

  23. Lotan R, Nicolson GL: Purification of cell membrane glycoproteins by lectin affinity chromatography. Biochim Biophys Acta 549:329–376, 1979.

    Google Scholar 

  24. Nicolson GL: Cell surface proteins and glycoproteins of metastatic murine melanomas and sarcomas. In: Biological markers in neoplasia: basic and applied aspects, Ruddon RW (ed). New York: North-Holland Publishing Co., 1978, pp 227–239.

    Google Scholar 

  25. Yogeeswaran G, Stein SB, Sebastian H: Altered cell surface organization of gangliosides and sialylglycoproteins of mouse metastatic melanoma variant lines selected in vivo for enhanced lung implantation. Cancer Res 38:1336–1344, 1978.

    PubMed  CAS  Google Scholar 

  26. Brunson KW, Beattie G, Nicolson GL: Selection and altered tumour cell properties of braincolonising metastatic melanoma. Nature 272:543–545, 1978.

    PubMed  CAS  Google Scholar 

  27. Brunson KW, Nicolson GL: Selection of malignant melanoma variant cell lines for ovary colonization. J Supramol Struct 11:517–528, 1979.

    PubMed  CAS  Google Scholar 

  28. Yogeeswaran G, Stein BS, Sebastian H: Characterization of tumorigenic and metastatic properties of murine sarcoma virus-transformed non-producer BALB/373 cell lines. J Natl Cancer Inst 64:951–957, 1980.

    PubMed  CAS  Google Scholar 

  29. Neri A, Nicolson GL: Phenotypic drift of metastatic and cell surface properties of mammary adenocarcinoma cell clones during growth In vitro. Int J Cancer 28:731–738, 1981.

    PubMed  CAS  Google Scholar 

  30. Warren L, Fuhrer JP, Buck CA: Surface glycoproteins of cells before and after transformation by oncogenic viruses. Fed Proc 32:80–85, 1973.

    PubMed  CAS  Google Scholar 

  31. Glick MC, Rabinowitz Z, Sachs L: Surface membrane blycopeptides correlated with tumorigenesis. Biochemistry 12:4864–4869, 1973.

    PubMed  CAS  Google Scholar 

  32. Warren L, Ziedman I, Buck CA: The surface glycoproteins of a mouse melanoma growing in culture and as a solid tumor in vivo. Cancer Res 35:2186–2190, 1975.

    PubMed  CAS  Google Scholar 

  33. Chen LB, Burridge K, Murray A, Walsh ML, Copple CD, Bushnell A, McDougall JK, Gallimore PH: Modulation of cell surface glycocalyx: studies on large, external transformation-sensitive protein. Ann NY Acad Sci 312:366–381, 1978.

    PubMed  CAS  Google Scholar 

  34. Chen LB, Summerhayes I, Hsieh P, Gallimore PH: Possible role of fibronectin in malignancy. J Supramol Struct 12:139–150, 1979.

    PubMed  CAS  Google Scholar 

  35. Yamada KM, Olden K: Fibronectins: adhesive glycoproteins of cell surface and blood. Nature 275:179–184, 1978.

    PubMed  CAS  Google Scholar 

  36. Stenman S, Vaheri A: Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J Exp Med 147:1054–1064, 1978.

    PubMed  CAS  Google Scholar 

  37. Wartiovaara J, Leivo I, Vaheri A: Expression of the cell surface-associated glycoprotein, fibronectin, in the early mouse embryo. Develop Biol 69:247–257, 1979.

    PubMed  CAS  Google Scholar 

  38. Smith HS, Riggs JL, Mosesson MW: Production of fibronectin by human epithelial cell lines. Cancer Res 39:4138–4144, 1979.

    PubMed  CAS  Google Scholar 

  39. Neri A, Ruoslahti E, Nicolson GL: The distribution of fibronectin on clonal cell lines of a rat mammary adenocarcinoma growing In vitro and in vivo at primary and metastatic sites. Cancer Res 41:5082–5095, 1981.

    PubMed  CAS  Google Scholar 

  40. Brady RO, Fishman PH: Biosynthesis of glycolipids in virus-transformed cells. Biochim Biophys Acta 355:121–148, 1974.

    PubMed  CAS  Google Scholar 

  41. Hakomori S-I: Structure and organization of cell surface glycolipids dependency on cell growth and malignant transformation. Biochim Biophys Acta 417:55–89, 1975.

    PubMed  CAS  Google Scholar 

  42. Yogeeswaran G, Stein BS: GlycosphingoHpids of metastatid variants of RNA virus-transformed nonproducer Balb/3T3 cell lines: altered metabolism and cell surface exposure. J Natl Cancer Inst 65:967–973, 1980.

    PubMed  CAS  Google Scholar 

  43. Strauch L: The role of collagenases in tumor invasion. In: Tissue interactions in carcinogenesis, Tarin D (ed). New York: Academic Press, 1972, pp 399–434.

    Google Scholar 

  44. Sylvén B, Snellman O, Sträuli P: Immunofluorescent studies on the occurrence of cathepsin Bl at tumor cell surfaces. Virchows Arch B Cell Path 17:97–112, 1974.

    Google Scholar 

  45. Dresden MH, Heilman SA, Schmidt JD: Collagenlytic enzymes in human neoplasms. Cancer Res 32:993–996, 1972.

    PubMed  CAS  Google Scholar 

  46. Hashimoto K, Yamanishi Y, Maeyens E, Dabbous MK, Kanzaki T: Collagenolytic activities of squamous cell carcinoma of the skin. Cancer Res 33:2790–2801, 1973.

    PubMed  CAS  Google Scholar 

  47. Sträuli P, Weiss L.: Cell locomotion and tumor penetration. Eur J Cancer 13:1–12, 1977.

    PubMed  Google Scholar 

  48. Carr I, Mc Ginty F, Norris P: The fine structure of neoplastic invasion: invasion of liver, skeletal muscle and lymphatic vessels by the Rd/3 tumour. J Pathol 118:91–99, 1976.

    PubMed  CAS  Google Scholar 

  49. Mareel M, De Bruyne G, De Ridder L: Invasion of malignant cell into 51Cr-labeled host tissue in organotypical culture. Oncology 34:6–9, 1977.

    PubMed  CAS  Google Scholar 

  50. Schnebli HP: A protease-like activity associated with malignant cells. Schweiz Med Wochenschr 102:1194–1197,1972.

    PubMed  CAS  Google Scholar 

  51. Bosmann HB: Elevated glycosidases and proteolytic enzymes in cells transformed by RNA tumor virus. Biochim Biophys Acta 264:339–343, 1972.

    PubMed  CAS  Google Scholar 

  52. Bosmann HB, Lockwood T, Morgan HR: Surface biochemical changes accompanying primary infection with Rous sarcoma virus, II. Proteolytic and glycosidase activity and sublethal autolysis. Exp Cell Res 83:25–30, 1974b.

    CAS  Google Scholar 

  53. Bosmann HB, Hall TC: Enzyme activity in invasive tumors of human breast and colon. Proc Natl Acad Sci USA 71:1833–1837, 1974.

    PubMed  CAS  Google Scholar 

  54. Yamanishi Y, Maeyens E, Dbbous MK, Ohyama H, Hashimoto K: Collagenolytic activity in malignant melanoma: physiochemical studies. Cancer Res 33:2507–2512, 1973.

    PubMed  CAS  Google Scholar 

  55. Koono M, Ushijima K, Hayashi H: Studies on the mechanisms of invasion in cancer. III. Purification of a neutral protease of rat ascites hepatoma cell associated with production of chemotactic factor for cancer cells. Int JCancer 13:105–115, 1974.

    CAS  Google Scholar 

  56. Sylvén B, Bois-Svensson I: On the chemical pathology of interstitial fluid. I. Proteolytic activities in transplanted mouse tumors. Cancer Res. 25:438–468, 1965.

    Google Scholar 

  57. Sylvén B, Malmgren H: The histological distribution of proteinase and peptidase activity in solid tumor transplants. Acta Radiol (suppl) 154:1–24, 1957.

    Google Scholar 

  58. Poole AR, Tiltman KJ, Recklies AD, Stocker TAM: Differences in secretion of the proteinase cathepsin B at the edge of human breast carcinomas and fibroadenomas. Nature 273:545–547, 1978.

    PubMed  CAS  Google Scholar 

  59. Zimmerberg J, Greengard O, Knox WE: Peptidyl proline hydroxylase in adult, developing, and neoplastic rat tissues. Cancer Res 35:1009–1014, 1975.

    PubMed  CAS  Google Scholar 

  60. Tökés ZA, Sorgente N, Okigaki T: Proteolysis associated with norman, carcinogen-treated and transformed rat liver epithelial cells. Prog Clin Biol Res 615–624, 1977.

    Google Scholar 

  61. Bosmann HB, Bieber GF, Brown AE, Case KR, Gersten DM, Kimmerer TW, Lione A: Biochemical parameters correlated with tumour cell implantation. Nature 246:487–489, 1973.

    PubMed  CAS  Google Scholar 

  62. Liotta LA, Tryggvason S, Garbisa S, Hart I, Foltz CM, Shafie S: Metastatic propensity correlates with tumor cell degradation of basement membrane collagen. Nature 284:67–68, 1980.

    PubMed  CAS  Google Scholar 

  63. Weiss L: The cell periphery metastasis and other contact phenomenon. Amsterdam: North Holland Publishing Co., 1967, pp 289–338.

    Google Scholar 

  64. Liotta LA, Abe S, Robey PG, Martin GR: Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor. Proc Natl Acad Sci USA 76:2268–2276, 1979.

    PubMed  CAS  Google Scholar 

  65. of a neutral protease which cleaves type IV collagen. Biochemistry 20:100–104, 1981.

    Google Scholar 

  66. Unkeless JC, Dan K, Kellerman GM, Reich E: Fibrinolysis associated with oncogenic transformation. Partial purification and characterization of the cell factor, a plasminogen activator. J Biol Chem 249:4295–4305, 1974.

    PubMed  CAS  Google Scholar 

  67. Christman JK, Acs G: Purification and characterization of a cellular fibrinolytic factor associated with oncogenic transformation: the plasminogen activator from SV40-transformed hamster cells. Biochem Biophys Acta 340:339–347, 1974.

    PubMed  CAS  Google Scholar 

  68. Ossowski L, Unkeless JC, Tobia A, Quigley JP, Rifkin DB, Reich E: An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. II. Mammalian fibroblast cultures transformed by DNA and RNA tumor viruses. J Exp Med 137:113–126, 1973.

    Google Scholar 

  69. Goldberg AR: Increase protease levels in transformed cells: a casein overlay assay for the detection of plasminogen activator production. Cell 2:95–102, 1974.

    PubMed  CAS  Google Scholar 

  70. Rifkin DB, Loeb JN, Moore G, Reich E: Properties of plasminogen activators formed by neoplastic human cell cultures. J Exp Med 139:1317–1328, 1974.

    PubMed  CAS  Google Scholar 

  71. Chen LB, Buchanan JM: Plasminogen-independent fibrinolysis by proteases produced by transformed chick embryo fibroblasts. Proc Natl Acad Sci USA 72:1132–1136, 1975.

    PubMed  CAS  Google Scholar 

  72. Unkeless JC, Gordon S, Reich E: Secretion of plasminogen activator by stimulated macrophages. J Exp Med 139:84–850, 1974.

    Google Scholar 

  73. Mott DM, Fabisch PH, Sani BP, Sorof S: Lack of correlation between fibrinolysis and the transformed state of cultured mammalian cells. Biochem Biophys Res Commun 61:621–627, 1974.

    PubMed  CAS  Google Scholar 

  74. Tökés ZA, Sorgente N: Cell surface-associated and released proteolytic activity of bovine aorta endothelia cell. Biochem Biophys Res Commun 73:965–971, 1976.

    PubMed  Google Scholar 

  75. Nicolson GL, Winkelhake JL, Nussey AC: An approach to studying the cellular properties associated with metastasis: some In vitro properties of tumor variants selected in vivo for enhanced metastasis. In: Fundamental aspects of metastasis, L Weiss (ed). Amsterdam: North-Holland Publishing Co., 1976, pp 291–303.

    Google Scholar 

  76. Wang BS, McLoughlin GA, Richie JP, Mannick JA: Correlation of the production of plasminogen activator with tumor metastasis in B16 melanoma cell lines. Cancer Res 40:288–292, 1980.

    PubMed  CAS  Google Scholar 

  77. Ossowski L, Reich E: Experimental model for quantitative study of metastasis. Cancer Res 40:2300–2309, 1980.

    PubMed  CAS  Google Scholar 

  78. Grimes WJ: Glycosyl transferase and sialic acid levels of normal and transformed cells. Bio-chemistry 12:990–996, 1973.

    CAS  Google Scholar 

  79. Chatterjee SK, Kim U: Galactosyltransferase activity in metastasizing and non-metastasizing rat mammary carcinomas and its probable relationship with tumor cell surface antigen shedding. J Natl Cancer Inst 58:273–280, 1977.

    PubMed  CAS  Google Scholar 

  80. Chatterjee SK: Glycosyltransferases in metastasizing and non-metastasizing rat mammary tumors and the release of these enzymes in the host sera. Eur J Cancer 15:1351–1356, 1979.

    PubMed  CAS  Google Scholar 

  81. Chatterjee SK, Kim U: Fucosyltransferase activity in metastasizing and non-metastasizing rat mammary carcinomas. J Natl Cancer Inst 61:151–162, 1978.

    PubMed  CAS  Google Scholar 

  82. Capel ID, Jenner M, Pinnock MH, Dorreil HM, Payne DC, Williams DC: Correlation between tumour size, metastatic spread and galactosyl transferase activity in cyclophosphamide-treated mice bearing the Lewis lung carcinoma. Oncology 36:242–244, 1979.

    PubMed  CAS  Google Scholar 

  83. Liotta LA, Kleinerman J, Catanzaro P, Rynbrandt D: Degradation of basement membrane by murine tumor cells. J Natl Cancer Inst 58:1427–1431, 1977.

    PubMed  CAS  Google Scholar 

  84. Garbisa S, Kniska K, Tryggvason K, Foltz C, Liotta LA: Quantitation of basement membrane collagen degradation by living tumor cells In vitro. Cancer Lett 9:359–366, 1980.

    PubMed  CAS  Google Scholar 

  85. Jones PA, DeClerck YA: Destruction of extracellular matrices containing glycoproteins, elastin, and collagen by metastatic human tumor cells. Cancer Res 40:3222–3227, 1980.

    PubMed  CAS  Google Scholar 

  86. Kramer RH, Gonzalez R, Nicolson GL: Metastatic tumor cells adhere preferentially to the extracellular matrix underlying vascular endothelial cells. Int J Cancer 26:639–645, 1980.

    PubMed  CAS  Google Scholar 

  87. Kramer RH, Nicolson GL: Invasion of vascular endothelial cell monolayers and underlying matrix by metastatic human cancer cells. In: International cell biology, Schweiger S (ed). Heidelberg: Springer-Verlag, 1981, pp 794–799.

    Google Scholar 

  88. Kramer RH, Vogel K, Nicolson GL: Solubilization and degradation of subendothelial matrix glycoproteins and proteoglycans by metastatic tumor cells. J Biol Chem 257:2678–2686, 1982.

    PubMed  CAS  Google Scholar 

  89. Oppenheimer SB, Utilization of L-glutamine in intercellular adhesion: ascites tumor andembryonic cells. Exp Cell Res 77:175–182, 1973.

    PubMed  CAS  Google Scholar 

  90. Oppenheimer SB: Functional involvement of specific carbohydrate in teratoma cell adhesion factor. Exp Cell Res 92:122–126, 1975.

    PubMed  CAS  Google Scholar 

  91. Chipowsky S, Lee YC, Roseman S: Adhesion of cultured fibroblasts to insoluble analogues of cell-surface carbohydrates. Proc Natl Acad Sci USA 70:2309–2312, 1973.

    PubMed  CAS  Google Scholar 

  92. Weigel PH, Schmell E, Lee YC, Roseman S: Specific adhesion of rat hepatocytes to β-galactosides linked to Polyacrylamide gels. J Biol Chem 253:330–333, 1978.

    PubMed  CAS  Google Scholar 

  93. Weigel PH, Schnarr RL, Kuhlenschmidt MS, Schmell E, Lee RT, Lee YC, Roseman S: Adhesion of hepatocytes to immobilized sugars. A threshold phenomenon. J Biol Chem 254:10830–10838, 1979.

    PubMed  CAS  Google Scholar 

  94. Coman DR: Decreased mutual adhesiveness, a property of cells from squamous cell carcinomas. Cancer Res 4:625–629, 1944.

    Google Scholar 

  95. Cribon CO, Franzen S, Unsgaard B, Zajieck J: Studies on the effect of aspiration biopsy on the viability of aspirated cells. I. Registration of pressure differences during aspiration. Scand J Haemetol 1:272–279, 1974.

    Google Scholar 

  96. Dorsey JK, Roth S: Adhesive specificity in normal and transformed mouse fibroblasts. Develop Biol 33:249–256, 1973.

    PubMed  CAS  Google Scholar 

  97. Wright TC, Ukena TE, Campbell R, Karnovsky MJ: Rates of aggregation, loss of anchorage dependence, and tumorigenicity of cultured cells. Proc Nat Acad Sci USA 74:258–262, 1977.

    PubMed  CAS  Google Scholar 

  98. Weiss L: Studies on cellular adhesion in tissue culture. V. Some effects of enzymes on cell detachment. Exp Cell Res 30:509–520, 1963.

    PubMed  CAS  Google Scholar 

  99. Winkelhake JL, Nicolson GL: Determination of adhesive properties of variant metastatic melanoma cells to BALB/3T3 cells and their virus-transformed derivatives by a monolayer attachment assay. J Natl Cancer Inst 56:285–291, 1976.

    PubMed  CAS  Google Scholar 

  100. Nicolson GL, Winkelhake JL: Organ specificity of blood-borne tumour metastasis determined by cell adhesion? Nature 255:230–232, 1975.

    PubMed  CAS  Google Scholar 

  101. Nicolson GL: Cell and tissue interactions leading to malignant tumor spread (metastasis). Amer Zool 18:77–86, 1978.

    Google Scholar 

  102. Fidler IJ: The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer 9:223–227, 1973.

    PubMed  CAS  Google Scholar 

  103. Liotta LA, Kleinerman J, Saidel GM: The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 36:889–894, 1976.

    PubMed  CAS  Google Scholar 

  104. Weiss L: Biophysical aspects of the metastatic cascade. In: Fundamental aspects of metastasis, Weiss L (ed). Amsterdam: North-Holland Publishing Co., 1976, pp 51–70.

    Google Scholar 

  105. Coman DR: Adhesiveness and stickiness: two independent properties of the cell surface. Cancer Res 21:1436–1438, 1961.

    PubMed  CAS  Google Scholar 

  106. Poste G: Sublethal autolysis. Modification of the cell periphery by lysosomal enzymes. Exp Cell Res 67:116–125, 1971.

    Google Scholar 

  107. Poste G, and Weiss L: Some consideration on cell surface alterations in malignancy. In: Fun- damental aspects of metastasis, Weiss L (ed). Amsterdam: North-Holland Publishing Co., 1976, pp 25–47, 1976.

    Google Scholar 

  108. Umbreit JN, Erbe RW: Transfer of tumor cells between cell aggregates as a model for adhesive changes in metastasis. Cancer Res 39:2001–2005, 1979.

    PubMed  CAS  Google Scholar 

  109. Gasic CJ, Gasic TB, Galanti N, Johnson T, Murphy S: Platelet-tumor cell interaction in mice. The role of platelets in the spread of malignant disease. Int J Cancer 11:704–718, 1973.

    PubMed  CAS  Google Scholar 

  110. Warren BA: Environment of the blood-borne tumor embolus adherent to vessel wall. J Med 4:150–177, 1973.

    PubMed  CAS  Google Scholar 

  111. Hilgard P: The role of blood platelets in experimental metastases. Br J Cancer 28:429–435, 1973.

    PubMed  CAS  Google Scholar 

  112. Gasic CJ, Koch PAG, Hsu B, Gasic TB, Niewiarowski S: Thrombogenic activity of mouse and human tumors: effect on platelets, coagulation, and fibrinolysis, and possible significance for metastases. Z Krebsforsch 86:263–277, 1976.

    CAS  Google Scholar 

  113. Gasic GJ, Gasic TB, Murphy S: Antimetastatic effects of aspirin. Lancet ii:932–933, 1972.

    Google Scholar 

  114. Fisher B, Fisher ER: Experimental studies of factors which influence hepatic metastases. VIII. Effect of anticoagulants. Surgery 50:240–247, 1961.

    PubMed  CAS  Google Scholar 

  115. Gespar H: Inhibition of cancer cell stickiness by anticoagulants, fibrinolytic drugs and pyrimidopyrimidine derivatives. Hematol Rev 3:1–51, 1972.

    Google Scholar 

  116. Chew EC, Wallace AC: Demonstration of fibrin in early stages of experimental metastasis. Cancer Res 36:1904–1909, 1976.

    PubMed  CAS  Google Scholar 

  117. Pearlstein E, Salk PL, Yogeeswaran G, Karpatkin S: Correlation between spontaneous metastatic potential, platelet-aggregating activity of cell surface extracts, and cell surface sialylation in 10 metastatic-variant derivatives of rat renal sarcoma cell line. Proc Natl Acad Sci USA 77:4336–4339, 1980.

    PubMed  CAS  Google Scholar 

  118. Gasic GJ, Boettiger D, Catalfamo JL, Gasic TB, Stewart GJ: Aggregation of platelets and cell membrane vesiculation by rat cells transformed In vitro by Rous sarcoma virus. Cancer Res 38:2950–2955, 1978.

    PubMed  CAS  Google Scholar 

  119. Hara Y, Steiner M, Baldini MG: Characterization of the platelet-aggregating activity of tumor cells. Cancer Res 40:1217–1221, 1980.

    PubMed  CAS  Google Scholar 

  120. Fidler IJ: Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 35:218–224, 1975.

    PubMed  CAS  Google Scholar 

  121. Fidler IJ, Bucana C: Mechanism of tumor cell resistance to lysis by syngeneic lymphocytes. Cancer Res 37:3945–3956, 1977.

    PubMed  CAS  Google Scholar 

  122. Fidler IJ, Nicolson GL: Tumor cell and host properties affecting the implantation and survival of blood-borne metastatic variants of B16 melanoma. Isr J Med Sci 14:38–50, 1978.

    PubMed  CAS  Google Scholar 

  123. Fidler IJ, Gersten DM, Budmen MB: Characterization in vivo and In vitro of tumor cells selected for resistance to syngeneic lymphocyte-mediated cytotoxicity. Cancer Res 36:3160–3165, 1976.

    PubMed  CAS  Google Scholar 

  124. Fidler IJ, Nicolson GL: The immunobiology of experimental metastatic melanoma. Cancer Biol Rev 2:171–234, 1981.

    Google Scholar 

  125. Fidler IJ: tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res 38:2651–2660, 1978.

    PubMed  CAS  Google Scholar 

  126. Salsbury AJ: The significance of the circulating cancer cell. Cancer Treat Rev 2:55–72, 1975.

    PubMed  CAS  Google Scholar 

  127. Fisher ER, Fisher B: Circulating cancer cells and metastasis. Int J Radiat Oncol Biol Phys 1:87–91, 1976.

    Google Scholar 

  128. Nicolson GL, Robbins JC, Winkelhake JL: Tumor cell surface and metastasis: dynamic changes in neoplastic membrane structure and their relationship to tumor spread. In: Cellular membrane and tumor cell behavior, Walborg EF (ed). Baltimore: Williams and Wilkins, 1975, pp 81–127.

    Google Scholar 

  129. Phondke GP, Madyastha KR, Madyastha PR, Barth RF: Relationship between Concanvalin A-induced agglutin-ability of murine leukemia cells and their propensity to form heterotypic aggregates with syngeneic lymphoid cells. J Natl Cancer Inst 66:643–647, 1981.

    PubMed  CAS  Google Scholar 

  130. Schirrmacher V, Cheinsong-PoPov R, Arheiter H: Hepatocyte-tumour cell interaction in vivo. I. Conditions for rosette formation and inhibition by anti-H2 antibody. J Exp Med 151:984–989, 1980.

    PubMed  CAS  Google Scholar 

  131. Nicolson GL: Metastatic tumor cell attachment and invasion assay utilizing vascular endothelial cell monolayers. J Histochem Cytochem 30:214–220, 1982.

    PubMed  CAS  Google Scholar 

  132. Chew EC, Josephson RL, Wallace AC: Morphologic aspects of the arrest of circulating cancer cells. In: Fundamental aspects of metastasis, Weiss L (ed). Amsterdam: North-Holland Publishing Co., 1976, pp 121–150.

    Google Scholar 

  133. Baserga R, Saffiotti U: Experimental studies on histogenesis of blood-borne metastases. Arch Pathol 59:26–34, 1955.

    CAS  Google Scholar 

  134. Wood Jr S: Mechanisms of establishment of tumor metastasis. Pathobiol Ann 1:281–308, 1971.

    Google Scholar 

  135. Day ED, Planinisek JA, Pressman D: Localization in vivo of radioiodinated anti-rat fibrin antibodies and radioiodinated rat fibrinogen in the Murphy rat lymphosarcoma and in other transplantable rat tumors. J Natl Cancer Inst 22:413–426, 1969.

    Google Scholar 

  136. Mootse G, Agostino D, Cliffton EE: Alterations in fibrinogen, plasminogen and inhibitors of plasmin with the growth of V2 carcinoma in rabbits. J Natl Cancer Inst 35:567–572, 1965.

    PubMed  CAS  Google Scholar 

  137. Kramer RH, Nicolson GL: Interactions of-tumor cells with vascular endothelial cell monolayers: A model for metastatic invasion. Proc Natl Acad Sci USA 76:5704–5709, 1979.

    PubMed  CAS  Google Scholar 

  138. Nicolson GL, Irimura T, Gonzales R, Rouslahti E: The role of fibronectin in adhesion of metastatic melanoma cells to endothelial cells and their basal lamina. Exp Cell Res 135:461–465, 1981.

    PubMed  CAS  Google Scholar 

  139. Terranova VP, Rohrback DH, Martin GR: Role of laminin in the attachment of PAM212 (epithelial) cells to basement membrane collagen. Cell 22:719–726, 1980.

    PubMed  CAS  Google Scholar 

  140. Murray CJ, Liotta LA, Rennard SI, Martin GR: Adhesion characteristics of murine metastatic and non-metastatic tumor cells In vitro. Cancer Res 40:347–351, 1980.

    PubMed  CAS  Google Scholar 

  141. Liotta LA, Tryggvason K, Garbisa S, Robey PG, Murrey JC: Interaction of metastatic tumor cells with basement membrane collagen. In: Metastatic tumor growth, Grundmann C (ed). New York: Verlag, 1980, pp 21–30.

    Google Scholar 

  142. Sugarbaker EV, Cohen AM: Altered antigenicity in spontaneous pulmonary metastases from an antigenic murine sarcoma. Surgery 72:155–164, 1972.

    PubMed  CAS  Google Scholar 

  143. Kim V, Baumler A, Carruthers C, Bielat K: Immunological escape mechanism in spontaneously metastasing mammary tumors. Proc Natl Acad Sci USA 72:1012–1016, 1975.

    PubMed  CAS  Google Scholar 

  144. Shearman PJ, Longenecker BM: Clonal variation and functional correlation of organ-specific metastasis and an organ-specific metastasis-associated antigen. Int J Cancer 27:387–395, 1981.

    PubMed  CAS  Google Scholar 

  145. Noweli PC: The clonal evolution of tumor cell populations. Science 194:23–28, 1976.

    Google Scholar 

  146. Miner KM, Lotan R, Nicolson GL: Metastatic and melanogenic properties of in vivo-selected B16 melanoma sublines and their clonal derivatives. In: Phenotypic expression in pigment cells, Seiji M (ed). Tokyo: Univ. Tokyo Press, 1981, pp 529–532.

    Google Scholar 

  147. Chambers AF, Hill RP, Ling V: Tumor heterogeneity and stability of the metastatic phenotype of mouse KHT sarcoma cells. Cancer Res 41:1368–1372, 1981.

    PubMed  CAS  Google Scholar 

  148. Kerbel RS: Immunologic studies of membrane mutants of a highly metastatic murine tumor. Am J Pathol 97:609–622, 1979.

    PubMed  CAS  Google Scholar 

  149. Olsson L, Ebbesen P: Natural polyclonality of spontaneous AKR leukemia and its consequences for so-called specific immunotherapy. J Natl Cancer Inst 62:623–627, 1979.

    PubMed  CAS  Google Scholar 

  150. Chow DA, Greenberg AH: The generation of tumor heterogeneity in vivo. Int J Cancer 25:261–265, 1980.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague/Boston/London

About this chapter

Cite this chapter

Nicolson, G.L. (1982). Cell surface properties of metastatic tumor cells. In: Liotta, L.A., Hart, I.R. (eds) Tumor Invasion and Metastasis. Developments in Oncology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7511-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7511-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7513-2

  • Online ISBN: 978-94-009-7511-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics