Skip to main content

Semiconductor Lasers and Photodetectors by Molecular Beam Epitaxy

  • Chapter
Molecular Beam Epitaxy and Heterostructures

Part of the book series: NATO ASI Series ((NSSE,volume 87))

Abstract

The present review contains results on the performance of A1xGa1-xAs/A1yGa1-yAs DH lasers for optical communication systems. In this respect, MBE-grown (A1Ga)As DH lasers with threshold current densities, Jth, as low as, if not lower than, those prepared by liquid-phase epitaxy (LPE) over the entire wavelength range from infrared to visible (0.88 μm — 0.7 μm) were obtained. Highly reliable DH lasers with Al0.08Ga0.92As active layers were demonstrated. Median CW laser lifetimes > 106h at room temperature were projected for 70°C CW constant power accelerated aging. Optical transmitters containing MBE-grown lasers were installed in 45 Mbit/sec lightwave transmission systems and have been under field-test since 1980. More recently, high quality InP similar to the high purity InP layers grown by vapor phase epitaxy (VPE) and LPE were also prepared by MBE. 1.3μm wavelength InP/GaInAsP DH lasers having averaged Jth of 3.5 kA/cm2 (1.8 kA/cm2 lowest) and 1.5μm wavelength InP/GaAlInAs DH lasers having Jth of 3 kA/cm2 were successfully prepared in a specially designed MBE system. A10.2Ga0.8Sb/GaSb DH lasers lasing at 1.78 μm were successfully prepared by MBE for the first time.

Meanwhile, the unique ability of MBE to grow atomically smooth ultra-thin (≤ 200Å) (A1Ga)As layers free of alloy clusters and layers with any desired compositional and doping profiles resulted in a new generation of electronic and photonic devices. These new devices yielded significant improvements in performance not generally achievable in conventional counterparts. In the photonic area, some examples are: multiquantum well (MQW) heterostructure lasers, double-barrier double-heterostructure lasers, graded-index waveguide separate-confinement heterostructure lasers (GRIN-SCH), multi-wavelength transverse-junction-strip lasers, superlattice avalanche photodetectors, graded-bandgap avalanche photodetectors and phototransistors, majority-carrier photodetectors, and superlattice etalon for optical bistability. With the modified MQW heterostructure and GRIN-SCH lasers extremely low Jth of 250 A/cm2 were obtained. Buried heterostructure GRIN-SCH lasers have threshold of 2.5 mA under CW operation. A lowest value ever reported for semiconductor laser. With the superlattice APD and graded bandgap APD an impact ionization rates ratio enhancement of ~10 was measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.Y. Cho, J.R. Arthur, Progr. Solid State Chem. 10, 157 (1975).

    Article  Google Scholar 

  2. K.G. Gunther, U.S. Patent No. 2,938,816 (1956); Naturwissen-Shaften, 45, 415 (1958).

    Google Scholar 

  3. J.E. Davey, T. Pankey, J. Appl. Phys. 39, 1941 (1968).

    Article  CAS  Google Scholar 

  4. J.R. Arthur, J. Appl. Phys. 39, 4032 (1968).

    Article  CAS  Google Scholar 

  5. A.Y. Cho, Jpn. J. Appl. Phys. 16(suppl. 16 ) 435 (1977).

    Google Scholar 

  6. A.Y. Cho, J. Vac. Sci. Technol. 16, 275 (1979) and references therin.

    Google Scholar 

  7. A.C. Gossard, in Thin Films: Preparation and Properties, edited by K.N. Tu and R. Rosenberg, Academic Press (to be pressed).

    Google Scholar 

  8. L.L. Chang, L. Esaki, W.E. Howard, R. Ludeke, J. Vac. Sci. Technol. 10, 11 (1973).

    Article  CAS  Google Scholar 

  9. L.L. Chang, R. Ludeke, in Epitaxial Growth edited by J.W. Mathews, ( Academic Press, New York 1975 ) p. 57.

    Google Scholar 

  10. K. Ploog, in Crystals: Growth, Properties and Applications, edited by Freyhardt, 1980, Vol. 3, p, 73.

    Google Scholar 

  11. B.A. Joyce, C.T. Foxon, J. Crystal Growth 31, 122 (1975).

    Google Scholar 

  12. B.A. Joyce, C.T. Foxon, J. Crystal Growth 31, 122 (1975).

    Google Scholar 

  13. H. Holloway, J.N. Walpole, Prog. Cryst. 2, 49 (1979).

    Google Scholar 

  14. J.N. Walpole, A.R. Calawa, T.C. Hamman, S.H. Groves, Appl. Phys. Lett. 28, 552 (1976).

    Google Scholar 

  15. C.E.C. Wood, in Physics of Thin Films Vol 11, edited by C. Hoff and M. Francombe, Academic Press (1980).

    Google Scholar 

  16. A.Y. Cho, H.C. Casey, Jr., Appl. Phys. Lett. 25, 288, (1974).

    Google Scholar 

  17. A.Y. Cho, R.W. Dixon, H.C. Casey, Jr., R.L. Hartman, Appl. Phys. Lett. 28, 501 (1976).

    Google Scholar 

  18. W.T. Tsang, Appl. Phys. Lett. 34, 473 (1979).

    Article  CAS  Google Scholar 

  19. W.T. Tsang, Appl. Phys. Lett. 36, 11 (1980).

    Article  CAS  Google Scholar 

  20. W.T. Tsang, J. Appl. Phys. 51, 917, (1980).

    Article  CAS  Google Scholar 

  21. W.T. Tsang, R.L. Hartman, B. Schwartz, P.E. Fraley, W.R. Holbrook, Appl. Phys. Lett 39, 683 (1981).

    Google Scholar 

  22. W.T. Tsang, J. Cryst. Growth 56, 464 (1982).

    Article  CAS  Google Scholar 

  23. W.T. Tsang, M. Dixon, B.A. Dean, (to be published in IEEE J. Quant. Electron.)

    Google Scholar 

  24. R.C. Miller, W.T. Tsang, Appl. Phys. Lett. 39, 334 (1981).

    Article  CAS  Google Scholar 

  25. R.L. Hartman, N.E. Schumaker, R.W. Dixon, Appl. Phys. Lett 31, 756 (1977).

    Google Scholar 

  26. R.L. Hartman, N.E. Schumaker, R.W. Dixon, Appl. Phys. Lett 31, 756 (1977).

    Article  CAS  Google Scholar 

  27. A.Y. Cho, K.Y.Cheng, Appl. Phys. Lett. 38, 360 (1981).

    Article  CAS  Google Scholar 

  28. J.C.M. Hwang, T.M. Brennan, H. Temkin, A.Y. Cho, to be published.

    Google Scholar 

  29. A.C. Gossard, P.M. Petroff, W. Wiegmann, R. Dingle, A. Savage, Appl. Phys. Lett 29, 323 (1976); P.M. Petroff, A.C. Gos¬sard, W. Wiegmann, A. Savage, J. Cryst. Growth 44, 5 (1978).

    Google Scholar 

  30. G.H. Dohler, K. Ploog, Prog. Crystal. Growth Charact. 2, 145 (1979).

    Article  Google Scholar 

  31. W.T. Tsang, M. Illegens, Appl. Phys. Lett 31, 301 (1977).

    Article  CAS  Google Scholar 

  32. W.T. Tsang, A.Y. Cho, Appl. Phys. Lett. 32, 491 (1978).

    Article  CAS  Google Scholar 

  33. A.Y. Cho, J. Appl. Phys. 41, 2780 (1970).

    Article  CAS  Google Scholar 

  34. R. Dingle, C.H. Henry, U.S. Patent 3982207, Sept. 21, 1976.

    Google Scholar 

  35. W.T. Tsang, C. Weisbuch, R.C. Miller, R. Dingle, Appl. Phys. Lett. 35, 673 (1979).

    Article  CAS  Google Scholar 

  36. W. T. Tsang, Appl. Phys. Lett. 38, 204 (1981).

    Article  CAS  Google Scholar 

  37. W.T. Tsang, Appl. Phys. Lett 38, 204 (1981). N.K. Dutta, to be published.

    Google Scholar 

  38. W.T. Tsang, Appl. Phys. Lett. 39, 786 (1981).

    Article  CAS  Google Scholar 

  39. W.T. Tsang, R.L. Hartman, Appl. Phys. Lett. 38, 502 (1981).

    Article  CAS  Google Scholar 

  40. A.R. Goodwin, J.R. Peters, M. Pion, G.H.B. Thompson, J.G.A. Whiteaway, J. Appl. Phys. 46, 3126 (1975).

    Article  CAS  Google Scholar 

  41. W.T. Tsang, Appl. Phys. Lett. 38, 835 (1981).

    Article  CAS  Google Scholar 

  42. W.T. Tsang, Appl. Phys. Lett. 39, 134 (1981).

    Article  CAS  Google Scholar 

  43. W.T. Tsang, R.A. Logan, J.A. Ditzenberger, to be published.

    Google Scholar 

  44. H. Namizaki, IEEE J. Quant. Electron. QE-11, 427 (1975).

    Article  Google Scholar 

  45. W.T. Tsang, Appl. Phys. Lett. 36, 441 (1980).

    Article  CAS  Google Scholar 

  46. R.J. Mclntyre, IEEE Trans. Electron Devices ED-13, 164 (1966).

    Article  Google Scholar 

  47. F. Capasso, W.T. Tsang, A.L. Hutchinson, P.W. Foy, 1981, Inst. Phys. Conf. Ser. No. 63, 463 (1982).

    Google Scholar 

  48. G.F. Williams, F. Capasso, W.T. Tsang, IEEE Electron Device Lett. ED-3, 71 (1982).

    Article  Google Scholar 

  49. F. Capasso, W.T. Tsang, A.L. Hutchinson, G.F. Williams, Appl. Phys. Lett. 40, 38 (1982).

    Article  CAS  Google Scholar 

  50. H. Kroemer, RCA Rev. 1833 (1957).

    Google Scholar 

  51. B.F. Levine, W.T. Tsang, C.G. Bethea, F. Capasso, to be published.

    Google Scholar 

  52. B.F. Levine, W.T. Tsang, C.G. Bethea, F. Capasso, to be published.

    Google Scholar 

  53. H.M. Gibbs, S.L. McCall, T.N.C. Venkatesan, A.C. Gossard, A. Passner, W. Wiegmann, Appl. Phys. Lett 34, 511 (1979).

    Article  CAS  Google Scholar 

  54. S.M. Jensen, SPIE 34, paper 10 (1982).

    Google Scholar 

  55. D.A.B. Miller, P.W. Smith, D.S. Chemla, D.J. Eilenberger, A.C. Gossard, W.T. Tsang,, to be published.

    Google Scholar 

  56. H.M. Gibbs, S.S. Taing, J.L. Jewell, D.A. Weinberger, K. Tai, A.C. Gossard, S.L. McCall, A. Passner, W. Wiegmann, to be published in Appl. Phys. Lett.

    Google Scholar 

  57. A.R. Calawa (private communication).

    Google Scholar 

  58. A.R. Calawa, Appl. Phys. Lett. 38, 701 (1981).

    Google Scholar 

  59. M.B. Panish, J. Electrochem, Soc. 127, 2729 (1980).

    Article  CAS  Google Scholar 

  60. C.E.C. Wood, edited by T. Pearsall, John Wiley and Sons (New York 1982 ), p. 87.

    Google Scholar 

  61. W.T. Tsang, J. Appl. Phys. 52, 3861 (1981).

    Article  CAS  Google Scholar 

  62. Y. Kamamura, Y. Noguchi, H. Asahi, H. Nagai, Electron Lett. 18, 91 (1982).

    Google Scholar 

  63. W.T. Tsang, R.C. Miller, F. Capasso, W.A. Bonner, Appl. Phys. Lett. 41, (1982).

    Google Scholar 

  64. W.T. Tsang, F.K. Reinhart, J.A. Ditzberger, to be published.

    Google Scholar 

  65. W.T. Tsang, N.A. Olsson, Appl. Phys. Lett, in press, (1983).

    Google Scholar 

  66. W.T. Tsang, N.A. Olsson, Appl. Phys. Lett, in press, (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Tsang, W.T. (1985). Semiconductor Lasers and Photodetectors by Molecular Beam Epitaxy. In: Chang, L.L., Ploog, K. (eds) Molecular Beam Epitaxy and Heterostructures. NATO ASI Series, vol 87. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5073-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5073-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8744-5

  • Online ISBN: 978-94-009-5073-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics