Skip to main content

Errors and the integrity of genetic information transfer

  • Chapter
Accuracy in Molecular Processes

Abstract

Accuracy in the synthesis of macromolecules involved with the processes of genetic information transfer, that is with the replication and repair of DNA, the transcription of genes into RNA messages, and the translation of RNA into proteins, is of particular interest in relation to the survival and reproduction of living cells. As was pointed out by Orgel (1963), the ability of a cell to carry out its various vital functions depends not only on its inheritance of an intact complement of genes, but also on its receiving from its parent a viable molecular apparatus for translating them into protein. In particular, Orgel drew attention to a possibility overlooked by the conventional dogma of a strictly unidirectional flow of genetic information from DNA to RNA to protein, namely that errors can be propagated cyclically within the translation apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alt, F. W., Kellems, R. E., Bertino, J. R. and Schimke, R. T. (1978) Selective amplification of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cell. J. Biol. Chem., 253, 1357–1370.

    Google Scholar 

  • Branscomb, E. W. and Galas, D.J. (1975) Progressive decrease in protein synthesis accuracy induced by streptomycin in E. coli. Nature, 254, 161–163.

    Google Scholar 

  • Burnet, F. M. (1974) Intrinsic Mutagenesis: A Genetic Approach to Ageing, Wiley, New York.

    Google Scholar 

  • Ciechanover, A., Finlay, D. and Varshavsky, A. (1984) Ubiquitin dependance of selective protein degradation demonstrated in the mammalian cell cycle mutant ts 85. Cell, 37, 57–66.

    Article  Google Scholar 

  • Crick, F. H. C., Brenner, S., Klug, A. and Pieczenik, G. (1976) A speculation on the origin of protein synthesis. Orig. Life, 1, 389–397.

    Article  Google Scholar 

  • Cutler, R. G. (1982) The dysdifferentiative hypothesis of mammalian ageing and longevity. In The Ageing Brain: Cellular and Molecular Mechanisms of Ageing in the Neurons System (eds E. Giacobini, G. Filogamo, G. Giacobini and A. Vernadakis ), Raven Press, New York.

    Google Scholar 

  • Edelman, P. and Gallant, J. (1977) Mistranslation in E. coli. Cell, 10, 131–137.

    Google Scholar 

  • Ehrenberg, M. and Kurland, C. G. (1984) Cost of accuracy determined by a maximal growth restraint. Quart. Rev. Biophys., 17, 45–82.

    Article  Google Scholar 

  • Eigen, M. and Schuster, P. (1979) The Hypercycle. Springer Verlag, Berlin and New York.

    Book  Google Scholar 

  • Finlay, D., Ciechanover, A. and Varshavsky, A. (1984) Thermolability of ubiquitin–activating enzyme from the mammalian cell cycle mutant ts 85. Cell, 37, 43–55.

    Article  Google Scholar 

  • Fong, D. and Poole, B. (1982) The effect of canavanine on protein synthesis and protein degradation in IMR-90 fibroblasts. Biochim. Biophys. Acta, 696, 193–200.

    Google Scholar 

  • Gallant, J. (1981) The error catastrophe theory of cellular senescence: A review. In Biological Mechanisms of Ageing (ed. R. T. Schimke), pp. 373–381. Publication no. 81 - 2194, National Institute of Health, Bethesda, Maryland.

    Google Scholar 

  • Gallant, J. and Foley, D. (1980) On the causes and prevention of mistranslation. In Ribosomes: Structure, Function and Genetics (eds C. Chambliss, C. R. Craven, J. Davis, L. Kahan and M. Nomura ), University Park Press, Baltimore, pp. 615–640.

    Google Scholar 

  • Gallant, J. A. and Prothero, J. (1980) Testing models of error propagation. J. Theor. Biol, 83, 561–578.

    Article  Google Scholar 

  • Gavilanes, J. G., de Buitrago, G. G., Perez-Castells, R. and Rodriguez, R. (1982) Isolation, characterisation and amino acid sequence of a ubiquitin-like protein from insect egg. J. Biol Chem., 257, 10267–10270.

    Google Scholar 

  • Gershon, D. (1979) Current status of age altered enzymes: Alternative mechanisms, Mech. Ageing Dev., 9, 189–196.

    Article  Google Scholar 

  • Goel, N. S. and Islam, S. (1976) Error catastrophe in and the evolution of the protein synthesizing machinery. J. Theor. Biol, 68, 167–182.

    Article  Google Scholar 

  • Goel, N. S. and Yeas, M. (1975) Error catastrophe hypothesis with reference to ageing and the evolution of the protein synthesizing machinery. J. Theor. Biol, 55, 245– 282.

    Google Scholar 

  • Goff, S. A., Casson, L. P. and Goldberg, A. L. (1984) The heatshock regulatory gene, htpR, influences rates of protein degradation and expression of the Ion gene in E. coli Proc. Natl Acad. Sci. USA, 81, 6647–6651.

    Article  Google Scholar 

  • Goldberg, A. L. and St John, A. C. (1976) Intracellular protein degradation in mammalian and bacterial cells. Ann. Rev. Biochem., 45, 747–803.

    Article  Google Scholar 

  • Hasegawa, M., Yano, T. and Miyata, T. (1984) Evolutionary implications of error amplification and the self-replicating and protein-synthesising machinery. J. Mol. Evol, 20, 77–85.

    Article  Google Scholar 

  • Hershko, A. (1983) Ubiquitin: Roles in protein modification and breakdown. Cell, 34, 11–12.

    Article  Google Scholar 

  • Hershko, A. and Ciechanover, A. (1982) Mechanisms of intracellular protein breakdown. Ann. Rev. Biochem., 51, 335–364.

    Article  Google Scholar 

  • Hightower, L. E. (1980) Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesise several polypeptides, J. Cell Physiol, 102, 407–427.

    Article  Google Scholar 

  • Hipkiss, A. R. (1979) Inhibition of breakdown of canavanyl-proteins in E. coli by chloramphenicol. Ferns. Microbiol Lett., 6, 349–353.

    Google Scholar 

  • Hoffmann, G. W. (1974) On the origin of the genetic code and the stability of the translation apparatus. J. Mol. Biol, 86, 349–362.

    Article  Google Scholar 

  • Holliday, R. (1984) The significance of DNA methylation in cellular ageing. In Molecular Basis of Ageing (eds A. D. Woodhead and A. D. Blackett ), Brookhaven Symposium Volume 33, pp. 1–15.

    Google Scholar 

  • Holliday, R. (1986) Genes, proteins and cellular ageing. Benchmark Papers in Genetics (ed. R. Holliday), van Nostrand Reinhold, Philadelphia.

    Google Scholar 

  • Holliday, R. and Kirkwood, T. B. L. (1983) Theories of cell ageing: A case of mistaken identity. J. Theor. Biol, 103, 329–330.

    Article  Google Scholar 

  • Holliday, R. and Tarrant, G. M. (1972) Altered enzymes in ageing human fibroblasts. Nature, 238, 26–30.

    Article  Google Scholar 

  • Hopfield, J. J. (1974) Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA, 71, 4135–4139.

    Article  Google Scholar 

  • Kelley, P. M. and Schlesinger, M. J. (1978) The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell, 15, 1277–1286.

    Article  Google Scholar 

  • Kemshead, J. T. and Hipkiss, A. R. (1974) Degradation of abnormal proteins in E. coli: relative susceptibility of canavanyl-proteins and puromycin peptides to proteolysis in vitro. Eur. J. Biochem., 45,535–540. Kirkwood, T. B. L. (1977) Evolution of ageing. Nature, 270,301–304. Kirk wood, T. B. L. (1980) Error propagation in intracellular information transfer. J. Theor. Biol., 82, 363–382.

    Google Scholar 

  • Kirkwood, T. B. L. (1977) Evolution of ageing. Nature, 270, 301–304.

    Google Scholar 

  • Kirkwood, T. B. L. (1980) Error propagation in intracellular information transfer. Theor. Biol. , 97, 257–265.

    Google Scholar 

  • Kirkwood, T. B. L. and Holliday, R. (1975) The stability of the translation apparatus. J. Mol. Biol, 97, 257–265.

    Article  Google Scholar 

  • Kirkwood, T. B. L., Holliday, R. and Rosenberger, R. F. (1984) Stability of the cellular translation process. Int. Rev. Cytol., 92, 93–132.

    Article  Google Scholar 

  • Kurland, C. G., Andersson, D. I., Andersson, S. G. E., Bohman, K., Bouadloun, F., Ehrenberg, M., Jelenc, P. C. and Ruusala, T. (1984) Translational accuracy and bacterial growth. In Gene Expression, Alfred Benzon Symposium, Volume 19 (eds B. F. C. Clark and H. U. Peterson ), Munksgaard, Copenhagen, pp. 193–207.

    Google Scholar 

  • Laughrea, M. (1982) On the error theory of ageing: A review of the experimental data. Exp. Gerontol., 17, 305–317.

    Article  Google Scholar 

  • Lee, D. C., Bochner, B. R. and Ames, B. N. (1983) AppppA, heat-shock stress and cell oxidation. Proc. Natl Acad. Sci. USA, 80, 7496–7500.

    Article  Google Scholar 

  • Lewis, C. M. and Holliday, R. (1970) Mistranslation and ageing in Neurospora. Nature, 228, 877–880.

    Article  Google Scholar 

  • Martin, R. (1983) Translational accuracy and the fidelity of DNA replication in E. coli. PhD Thesis, CNAA, London.

    Google Scholar 

  • Medvedev, Zh. A. (1962) Ageing at the molecular level. In Biological Aspects of Ageing (ed. N. W. Shock ), Columbia University Press, New York, pp. 255–266.

    Google Scholar 

  • Medvedev, Zh. A. (1980) The role of infidelity of transfer of information for the accumulation of age changes in differentiated cells. Mech. Ageing Dev., 14, 1–14.

    Article  Google Scholar 

  • Menninger, J. R. (1977) Ribosome editing and the error catastrophe hypothesis of cellular ageing. Mech. Ageing Dev., 6, 131–142.

    Article  Google Scholar 

  • Menninger, J. R. (1983) Computer simulation of ribosome editing. J. Mol. Biol., 171, 383–399.

    Article  Google Scholar 

  • Miller, J. H. and Schmeissner, U. (1979) Genetic studies of the lac repressor X. Analysis of missense mutations in the lac I gene. J. Mol. Biol., 131, 223–248.

    Article  Google Scholar 

  • Miller, S. L. and Orgel, L. E. (1973) The Origins of Life on Earth, Prentice Hall, New York.

    Google Scholar 

  • Morrison, P. F., Aroesty, J., Creekmore, S. P., Barker, P. F. and Lincoln, T. L. (1983) A preliminary model of double minutes mediated by gene amplification. J. Theor. Biol., 104, 71–91.

    Article  Google Scholar 

  • Mount, D. W. (1980) The genetics of protein degradation in bacteria. Ann. Rev. Genet., 14, 279–319.

    Article  Google Scholar 

  • Murray, V. and Holliday, R. (1981) Increased error frequency of DNA polymerase from senescent human fibroblasts. J. Mol. Biol., 146, 55–76.

    Article  Google Scholar 

  • Neidhardt, F. C., van Bogelen, R. A. and Vaughn, V. (1984) The genetics and regulation of heat-shock proteins. Ann. Rev. Genet., 18, 295–329.

    Article  Google Scholar 

  • Ninio, J. (1975) Kinetic amplification of enzyme discrimination. Biochimie, 57, 587– 595.

    Article  Google Scholar 

  • Orgel, L. E. (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl Acad. Sci. USA, 49, 517–521.

    Article  Google Scholar 

  • Orgel, L. E. (1970) The maintenance of the accuracy of protein synthesis and its relevance to ageing: A correction. Proc. Natl Acad. Sci. USA, 67, 1476.

    Article  Google Scholar 

  • Orgel, L. E. (1973) Ageing of clones of mammalian cells. Nature, 243, 441–445.

    Article  Google Scholar 

  • Ozkaynak, E., Finlay, D. and Varshavsky, A. (1984) The yeast ubiquitin gene: head to tail repeats encoding a polyubiquitin precursor. Nature, 312, 663–666.

    Article  Google Scholar 

  • Prouty, W. K., Karnovsky, M. L. and Goldberg, A. L. (1975) Degradation of abnormal proteins in E. coli. Formation of protein inclusions in cells exposed to amino acid analogues. J. Biol. Chem., 250, 1112–1122.

    Google Scholar 

  • Rosenberger, R. F. (1982) Streptomycin-induced protein error propagation appears to lead to cell death in E. coli. IRCS Med. Sci., 10, 874–875.

    Google Scholar 

  • Rosenberger, R. F., Foskett, G. and Holliday, R. (1980) Error propagation in E. coli and its relation to cellular ageing. Mech. Ageing Dev., 13, 247–252.

    Google Scholar 

  • Rothstein, M. (1977) Recent developments in the age-related alterations of enzymes: A review. Mech. Ageing Dev., 6, 241–257.

    Article  Google Scholar 

  • Schimke, R. T., Brown, P. C., Kaufman, R. J., McGrogan, M., and Slate, D. L. (1980) Chromosomal and extrachromosomal localization of amplified dihydrofolate reductase genes in cultured mammalian cells. Cold Spring Harbor Symp. Quant. Biol., 45, 785–797.

    Google Scholar 

  • Schlesinger, M. J., Ashburner, M. and Tissieres, A. (eds) (1982) Heat Shock: From Bacteria to Man, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • Thomas, P. G. and Mathews, M. B. (1984) Alterations of transcription and translation in Hela cells exposed to amino acid analogs. Mol. Cell. Biol., 4, 1063–1072.

    Google Scholar 

  • Varshavsky, A. (1981) On the possibility of metabolic control of replicon misfiring: Relationship to emergence of malignant phenotypes in mammalian cell lineages. Proc. Natl Acad. Sci. USA, 78, 3673–3677.

    Article  Google Scholar 

  • Varshavsky, A., Levinger, L., Lundin, O., Barsum, H., Ozkaynak, E., Swerdlow, P. and Finlay, D. (1983) Cellular and SV40 chromatin: replication, segregation, ubiquitination, nuclease hypersensitive sites, HMG-containing nucleosomes and heterochromatin-specific protein. Cold Spring Harbor Symp. Quant. Biol, 47, 511–528.

    Google Scholar 

  • Wahl, G. M., Padgett, R. A. and Stark, G. R. (1979) Gene amplification causes overproduction of the first three enzymes of UMP synthesis in N (phosphonacetyl)-L- aspartate resistant hamster cells. J. Biol. Chem., 254, 8679–8689.

    Google Scholar 

  • Wilson, V. L. and Jones, P. A. (1983) DNA methylation decreases in ageing but not in immortal cells. Science, 220, 1055–1057.

    Article  Google Scholar 

  • Woolhouse, H. W. (1969) DNA polymerase, genetic variation and determination of the life span. In Proc. 8th Int. Congr. Gerontol., Vol. 1, pp. 162–166. Federation of American Societies for Experimental Biology, Washington, DC.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Chapman and Hall

About this chapter

Cite this chapter

Rosenberger, R.F., Kirkwood, T.B.L. (1986). Errors and the integrity of genetic information transfer. In: Kirkwood, T.B.L., Rosenberger, R.F., Galas, D.J. (eds) Accuracy in Molecular Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4097-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4097-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8318-8

  • Online ISBN: 978-94-009-4097-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics