Skip to main content

Selection for optimal accuracy and the evolution of ageing

  • Chapter
Accuracy in Molecular Processes

Abstract

The processing of genetic information is fundamental to every aspect of life. Thus it is obvious that natural selection acts as much upon the accuracy of macromolecular synthesis as on any other trait. The outcome of this selection is readily apparent in the range of mechanisms which co-operate to produce the high fidelity of synthesis of DNA, RNA and proteins that is found in present-day species. Primitive organisms presumably lacked these mechanisms and were, therefore, far less accurate. In this chapter, we discuss whether the accuracy of synthesis of macromolecules is, in some sense, optimal, or merely the best which has so far been achieved. We also consider selection for the stability of translation, as well as its accuracy (see Chapter 2). We conclude that there is strong support for the view that both accuracy and translational stability have been optimized, and we explore their relationship to the evolution of ageing in higher organisms (see also Kirkwood, 1977; Kirkwood and Holliday, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames, B. N. (1983) Dietary carcinogens and anticarcinogens. Science, 221, 1256–1264.

    Article  Google Scholar 

  • Bennett, C. H. (1979) Dissipation-error tradeoff in proofreading. Bio-Systems, 11, 85–91.

    Article  Google Scholar 

  • Blomberg, C., Ehrenberg, M. and Kurland, C. G. (1980) Free energy dissipation constraints on the accuracy of enzymatic selections. Quart. Rev. Biophys., 13, 231–254.

    Article  Google Scholar 

  • Bohman, K. T., Ruusala, T., Jelenc, P. C. and Kurland, C. G. (1984) Kinetic impairment of restrictive streptomycin resistant ribosomes. Mol. Gen. Genet., 198, 90–99.

    Article  Google Scholar 

  • Bukhari, A. I. and Zipser, D. (1973) Mutants of Escherichia coli with a defect in the degradation of nonsense fragments. Nature New Biol. , 243, 238–241.

    Article  Google Scholar 

  • Charlesworth, B. (1980) Evolution in Age-Structured Populations. Cambridge University Press, Cambridge.

    Google Scholar 

  • Comfort, A. (1979) The Biology of Senescence, 3rd edn, Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Drake, J. W. (1969) Comparative spontaneous mutation rates. Nature, 221, 1128– 1132.

    Google Scholar 

  • Ehrenberg, M. and Kurland, C. G. (1984) Costs of accuracy determined by a maximal growth constraint. Quart. Rev. Biophys., 17, 45–82.

    Article  Google Scholar 

  • Fersht, A. R. and Dingwall, C. (1979) Evidence for the double-sieve editing mechanism in protein synthesis. Steric exclusion of isoleucine by valyl-tRNA synthetases. Biochemistry, 18, 2627–2631.

    Article  Google Scholar 

  • Francis, A. A., Lee, W. H. and Regan, J. D. (1981) The relationship of DNA excision repair of ultraviolet-induced lesions to the maximum life span of mammals. Mech. Ageing Dev., 16, 181–189.

    Article  Google Scholar 

  • Fulder, S.J. and Holliday, R. (1975) A rapid rise in cell variants during the senescence of populations of human fibroblasts. Cell, 6, 67–73.

    Article  Google Scholar 

  • Galas, D. J. and Branscomb, E. W. (1976) Ribosomes slowed by mutation to streptomycin resistance. Nature, 262, 617–619.

    Article  Google Scholar 

  • Goldberg, A. L. (1972) Degradation of abnormal proteins in Escherichia coli. Proc. Natl Acad. Sci. USA, 69, 422–426.

    Article  Google Scholar 

  • Goldberg, A. L. and Dice, J. F. (1974) Intracellular protein degradation in mammalian and bacterial cells, Part 1. Ann. Rev. Biochem., 43, 835–369.

    Article  Google Scholar 

  • Goldberg, A. L. and St John, A. C. (1976) Intracellular protein degradation in mammalian and bacterial cells, Part 2. Ann. Rev. Biochem., 45, 747–803.

    Article  Google Scholar 

  • Hall, K. Y., Hart, R. W., Bernischke, A. K. and Waif or d, R. L. (1984) Correlation between ultraviolet-induced DNA repair in primary lymphocytes and fibroblasts and species maximum achievable lifespan. Mech. Ageing Dev., 24, 163–173.

    Article  Google Scholar 

  • Hamilton, W. D. (1966) The moulding of senescence by natural selection. J. Theor. Biol., 12, 12–45.

    Article  Google Scholar 

  • Hart, R. W. and Setlow, R. B. (1974) Correlation between deoxyribonucleic acid excision repair and lifespan in a number of mammalian species. Proc. Natl Acad. Sci. USA, 71, 2169–2173.

    Article  Google Scholar 

  • Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains. Expl Cell Res. , 37, 614–636.

    Article  Google Scholar 

  • Haynes, R. H., Barclay, B. J., Eckardt, F., Landman, O., Kunz, B. and Little, J. G. (1982) Genetic control of DNA repair in yeast. In Proc. XIVth Int. Congr. Genetics (ed. D. K. Beliayev ), Nank Publishing House, Moscow.

    Google Scholar 

  • Holliday, R. (1984) The unsolved problem of cellular ageing. Monogr. dev. Biol., 17, 60–77.

    Google Scholar 

  • Holliday, R. (1985) The significance of DNA methylation in cellular ageing. In The Molecular Biology of Aging (eds A. D. Woodhead, A. D. Blackett and A. Hollaender ), Plenum, New York, pp. 269–283.

    Google Scholar 

  • Holliday, R., Huschtscha, L. I. and Kirkwood, T. B. L. (1981) Cellular ageing: further evidence for the commitment theory. Science, 213, 1505–1508.

    Article  Google Scholar 

  • Holliday, R., Huschtscha, L. I., Tarrant, G. M. and Kirkwood, T. B. L. (1977) Testing the commitment theory of cellular ageing. Science, 198, 366–372.

    Article  Google Scholar 

  • Hopfield, J. J. (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA, 71, 4135–4139.

    Article  Google Scholar 

  • Hubner, U. and Alberts, B. M. (1980) Fidelity of DNA replication catalyzed in vitro on a natural DNA template by the 4 bacteriophage multienzyme complex. Nature, 285, 300–305.

    Article  Google Scholar 

  • Kato, H., Harada, M., Tsuchiya, K. and Moriwaki, K. (1980) Absence of correlation between DNA repair in ultraviolet irradiated mammalian cells and lifespan of the donor species. Japan J. Genetics, 55, 99–108.

    Article  Google Scholar 

  • Kirkwood, T. B. L. (1977) Evolution of ageing. Nature, 270, 301–304.

    Article  Google Scholar 

  • Kirkwood, T. B. L. (1981) Repair and its evolution: survival versus reproduction. In Physiological Ecology: An Evolutionary Approach to Resource Use (eds C. R. Townsend and P. Calow ), Blackwell Scientific, Oxford, pp. 165–189.

    Google Scholar 

  • Kirkwood, T. B. L. (1984) Towards a unified theory of cellular ageing. Monogr. dev. Biol., 17, 9–20.

    Google Scholar 

  • Kirkwood, T. B. L. and Holliday, R. (1975a) The stability of the translation apparatus. J. Mol. Biol., 97, 257–265.

    Article  Google Scholar 

  • Kirkwood, T. B. L. and Holliday, R. (1975b) Commitment to senescence: a model for the finite and infinite growth of diploid and transformed human fibroblasts in culture. J. Theor. Biol., 53, 481–496.

    Article  Google Scholar 

  • Kirkwood, T. B. L. and Holliday, R. (1979) The evolution of ageing and longevity. Proc. R. Soc. Lond. B, 205, 531–546.

    Article  Google Scholar 

  • Kirkwood, T. B. L. and Holliday, R. (1985) Ageing as a consequence of natural selection. In The Biology of Human Ageing (eds K. J. Collins and A. H. Bittles ), Cambridge University Press, Cambridge.

    Google Scholar 

  • Kirkwood, T. B. L., Holliday, R. and Rosenberger, R. F. (1984) Stability of the cellular translation process. Int. Rev. Cytol., 92, 93–132.

    Article  Google Scholar 

  • Kornberg, A. (1980) DNA Replication, Freeman, San Francisco.

    Google Scholar 

  • Lack, D. (1954) The Natural Regulation of Animal Numbers, Clarendon Press, Oxford.

    Google Scholar 

  • Ley, R. D., Sedita, A., Grube, D. D. and Fry, R. J. M. (1977) Induction and persistence of pyrimidine dimers in the epidermal DNA of two strains of hairless mice. Cancer Res. , 37, 3243–3248.

    Google Scholar 

  • Linn, S., Kairis, M. and Holliday, R. (1976) Decreased fidelity of DNA polymerase activity isolated from ageing human fibroblasts. Proc. Natl Acad. Sci. USA, 73, 2818–2822.

    Article  Google Scholar 

  • Maaløe, O. (1979) Regulation of the protein synthesising machinery - ribosomes, tRNA, factors and so on. In Biological Regulation and Development, Vol. 1 (ed. R. F. Goldberger ), Plenum, New York, pp. 487–537.

    Google Scholar 

  • Martin, G. M. (1977a) Cellular ageing - clonal senescence. Am. J. Pathol., 89, 484–511.

    Google Scholar 

  • Martin, G. M. (1977b) Cellular ageing - postreplicative cells. Am. J. Pathol., 89, 513–530.

    Google Scholar 

  • Martin, G. M., Sprague, C. A. and Epstein, C. J. (1970) Replicative lifespan of cultivated animal cells: effects of donor’s age, tissue and genotype. Lab. Invest., 23, 86–92.

    Google Scholar 

  • Maynard Smith, J. (1976) Group selection. Q. Rev. Biol., 51, 277–283.

    Article  Google Scholar 

  • Maynard Smith, J. (1978) The Evolution of Sex, Cambridge University Press, Cambridge.

    Google Scholar 

  • Medawar, P. B. (1952) An Unsolved Problem in Biology, H. K. Lewis, London.

    Google Scholar 

  • Morley, A., Cox, S. and Holliday, R. (1982) Human lymphocytes resistant to 6- thioguanine increase with age. Mech. Ageing Dev., 19, 21–36.

    Article  Google Scholar 

  • Murray, V. and Holliday, R. (1981) Increased error frequency of DNA polymerases from senescent human fibroblasts. J. Mol. Biol., 146, 55–76.

    Article  Google Scholar 

  • Ninio, J. (1975) Kinetic amplification of enzyme discrimination. Biochimie, 57, 587– 595.

    Google Scholar 

  • Orgel, L. E. (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl Acad. Sci. USA, 49, 517–521.

    Article  Google Scholar 

  • Orgel, L. E. (1973) Ageing of clones of mammalian cells. Nature, 243, 441–445.

    Article  Google Scholar 

  • Peleg, L., Raz, E. and Ben Ishai, R. (1977) Changing capacity for DNA excision repair in mouse embryonic cells in vitro. Exp. Cell Res., 104, 301–307.

    Article  Google Scholar 

  • Radman, M., Villani, G., Boiteux, S., Kinsella, A. R., Glickman, B. W. and Spadari, S. (1978) Replication fidelity: mechanisms of mutation avoidance and mutation fixation. ColdSpr. Harb. Symp. Quant. Biol., 43, 937–946.

    Google Scholar 

  • Savageau, M. A. and Freter, R. R. (1979) On the evolution of accuracy and cost of proofreading tRNA aminoacylation. Proc. Natl Acad. Sci. USA, 76, 4507–4510.

    Article  Google Scholar 

  • Strehler, B. L. (1977) Time, Cells and Aging, 2nd edn, Academic Press, New York.

    Google Scholar 

  • Treton, J. A. and Courtois, Y. (1982) Correlation between DNA excision repair and mammalian lifespan in lens epithelial cells. Cell Biol. Int. Rep., 6, 253–260.

    Article  Google Scholar 

  • Waxman, L. and Goldberg, A. L. (1982) Protease La from Escherichia coli hydrolyzes ATP and proteins in a linked fashion. Proc. Natl Acad. Sci. USA, 79, 4883–4887.

    Article  Google Scholar 

  • Weismann, A. (1891) Essays upon Heredity and Kindred Biological Problems, Vol. 1, 2nd edn, Clarendon Press, Oxford.

    Google Scholar 

  • Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence. Evolution, 11, 398–411.

    Article  Google Scholar 

  • Yarns, M. (1979) The accuracy of translation. Prog. Nucl. Acid Mol. Biol., 23, 195–225.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Chapman and Hall

About this chapter

Cite this chapter

Kirkwood, T.B.L., Holliday, R. (1986). Selection for optimal accuracy and the evolution of ageing. In: Kirkwood, T.B.L., Rosenberger, R.F., Galas, D.J. (eds) Accuracy in Molecular Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4097-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4097-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8318-8

  • Online ISBN: 978-94-009-4097-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics