Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 243))

Abstract

Some principal results from paleoclimatology are reviewed in terms of climate model simulations of past climates. Much of the research on past climates has focused on the origin of an ice-free Earth and the climates of the last ice age and present interglacial. In order to account for such large climate changes, several different mechanisms must be invoked — changes in atmospheric carbon dioxide, ocean circulation, the seasonal cycle, and high-latitude albedo. In some cases there is good agreement between models and data for different paleoclimate scenarios. However, significant problems remain and some specific examples of modelling opportunities are listed. Results from paleoclimate studies are used as a frame of reference for interpreting possible consequences of a future greenhouse warming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, L. W., W. Alvarez, F. Asaro and H. V. Michel, 1980: ‘Extraterrestrial cause for the Cretaceous-Tertiary extinction.’ Science, 208, 1095–1108.

    Article  Google Scholar 

  • Alvarez, W., L. W. Alvarez, F. Asaro and H. V. Michel, 1984a: ‘The end of the Cretaceous: Sharp boundary or gradual transition?’ Science, 223, 1183–1186.

    Article  Google Scholar 

  • Alvarez, W., E. G. Kauffman, F. Surlyk, L. W. Alvarez, F. Asaro and H. V. Michel, 1984b: ‘Impact theory of mass extinctions and the invertebrate fossil record.’ Science, 223, 1135–1141.

    Article  Google Scholar 

  • Arkin, P. A., 1984: An examination of the Southern Oscillation and the upper tropospheric tropical and subtropical wind field. Ph.D. thesis, U. of Maryland, 240 pp.

    Google Scholar 

  • Arthur, M. A., W. E. Dean and S. O. Schlanger, 1985: ‘Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2.’ In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, eds. E. T. Sundquist and W. S. Broecker, Geophys. Mono. 32, Amer. Geophys. Union, Washington, DC, 504–530.

    Chapter  Google Scholar 

  • Barron, E. J., 1985: ‘Explanations of the Tertiary global cooling trend.’ Palaeogeog., Palaeocllm., Palaeoecol., 50, 45–61.

    Article  Google Scholar 

  • Barron, E. J., J. L. Sloan and C. G. A. Harrison, 1980: ‘Potential significance of land-sea distribution and surface albedo variations as a climatic forcing factor: 180 M. y. to the present.’ Palaeogeog., Palaeoclim., Palaeoecol., 30, 17–40.

    Article  Google Scholar 

  • Barron, E. J., C. G. A. Harrison, J. L. Sloan and W. W. Hay, 1981a: ‘Paleogeography, 180 million years ago to the present.’ Eclogae Geologlcae Helvetlae, 74, 443–470.

    Google Scholar 

  • Barron, E. J., S. L. Thompson and S. H. Schneider, 1981b: ‘An ice-free Cretaceous? Results from climate model simulations.’ Science, 212, 501–508.

    Article  Google Scholar 

  • Barron, E. J., and W. M. Washington, 1982a: ‘Atmospheric circulation during warm geologic periods: Is the equator-to-pole surface-temperature gradient the controlling factor?’ Geology, 10, 633–636.

    Article  Google Scholar 

  • Barron, E. J., and W. M. Washington, 1982b: ‘Cretaceous climate: A comparison of atmospheric simulations with the geologic record.’ Palaeogeog., Palaeoclim., Palaeoecol., 40, 103–133.

    Article  Google Scholar 

  • Barron, E. J., and W. M. Washington, 1984: ‘The role of geographic variables in explaining paleoclimates: Results from Cretaceous climate model sensitivity studies.’ J. Geophys. Res., 89, 1267–1279.

    Article  Google Scholar 

  • Barron, E. J., and W. M. Washington, 1985: ‘Warm Cretaceous climates: High atmospheric CO2 as a plausible mechanism.’ In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, eds. E. T. Sundquist and W. S. Broecker, Geophys. Mono. 32, Amer. Geophys. Union, Washington, DC, 546–553.

    Chapter  Google Scholar 

  • Bentley, C. R., 1984: ‘Some aspects of the cryosphere and its role in climatic change.’ In: Climate Processes and Climate Sensitivity, eds. J. E. Hansen and T. Takahashi, Geophys. Mono. 29, Amer. Geophys. Union, Washington, DC, 207–220.

    Chapter  Google Scholar 

  • Berger, A. L., J. Imbrie, J. D. Hays, G. J. Kukla and B. Saltzman (Eds.), 1984: Milankovitch and Climate. NATO ASI Series, Reidel, Dordrecht, The Netherlands, 895 pp.

    Google Scholar 

  • Berggren, W. A., and C. D. Hollister, 1974: ‘Paleogeography, paleobiogeography, and the history of circulation in the Atlantic Ocean.’ In Studies in Paleo-Oceanography, ed. W. W. Hay, Soc. Econ. Paleontol. and Mineral. Spec. Pub. No. 20, 126–186.

    Google Scholar 

  • Berner, R. A., A. C. Lasaga and R. M. Garrels, 1983: ‘The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the last 100 million years.’ Amer. J. Sci., 283, 641–683.

    Article  Google Scholar 

  • Boyle, E. A., 1983: ‘Chemical accumulation variations under the Peru Current during the past 130,000 years.’ J. Geophys. Res., 81, 2595–2603.

    Google Scholar 

  • Boyle, E. A., 1986: ‘Paired carbon isotope and cadmium data from benthic foraminifera: Implications for changes in oceanic phosphorous, oceanic circulation, and atmospheric carbon dioxide.’ Geochim. et Cosmochim. Acta, 50, 265–276.

    Google Scholar 

  • Boyle, E. A., and L. D. Keigwin, 1985/86: ‘Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: Changes in deep ocean circulation and chemical inventories.’ Earth Plan. Sci. Lett., 76, 135–150.

    Article  Google Scholar 

  • Broecker, W. S., 1982: ‘Ocean chemistry during glacial times.’ Geochim. et Cosmochim. Acta, 46, 1689–1705.

    Google Scholar 

  • Broecker, W. S., 1986: ‘Oxygen isotope constraints on surface ocean temperatures.’ Quat. Res., 26, 121–134.

    Article  Google Scholar 

  • Broecker, W. S., and T.-H. Peng, 1982: Tracers in the Sea, Eldigio Press, Palisades, New York, 690 pp.

    Google Scholar 

  • Broecker, W. S., D. M. Peteet and D. Rind, 1985: ‘Does the ocean-atmosphere system have more than one stable mode of operation?’ Nature, 315, 21–26.

    Article  Google Scholar 

  • Bryan, F., 1986: ‘High-latitude salinity effects and interhemispheric thermohaline circulations.’ Nature, 323, 301–304.

    Article  Google Scholar 

  • Bryan, K., 1982: ‘Poleward heat transport by the ocean: Observations and models.’ Ann. Rev. Earth Plan. Sci., 10, 15–38.

    Article  Google Scholar 

  • Bryan, K., 1986: ‘Poleward buoyancy transport in the ocean and mesoscale eddies.’ J. Phys. Oceanog., 16, 927–933.

    Article  Google Scholar 

  • Bryan, K., and S. Manabe, 1988: ‘Ocean circulation in warm and cold climates.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. II, M. E. Schlesinger, ed., Kluwer Academ: Publishers, 951–966.

    Google Scholar 

  • Budd, W., and B. Mclnnes, 1978: ‘Modelling surging glaciers and periodic surging of the Antarctic ice sheet.’ In: Climate Change and Variability — A Southern Perspective, eds. A. B. Pittock, L. A. Frakes, D. Jensen, J. A. Peterson, J. W. Zillman, Cambridge Univ. Press, 228–234.

    Google Scholar 

  • Budyko, M. I., and A. B. Ronov, 1979: ‘Chemical evolution of the atmosphere in the Phanerozoic.’ Geochemistry, 5, 643–653.

    Google Scholar 

  • Cahalan, R. F., and G. R. North, 1979: ‘A stability theorem for energy-balance climate models.’ J. Atmos. Sci., 36, 1205–1216.

    Article  Google Scholar 

  • Carter, L. D., J. Brigham-Grette, L. Marlncovich, Jr., V. L. Pease and J. W. Hillhouse, 1986: ‘Late Cenozoic Arctic Ocean sea ice and terrestrial paleoclimate.’ Geol., 14, 675–678.

    Article  Google Scholar 

  • Cavalieri, D. J., P. Gloersen and W. J. Campbell, 1984: ‘Determination of sea ice parameters with the NIMBUS 7 SMMR.’ J. Geophys. Res., 89, 5355–5369.

    Article  Google Scholar 

  • Cieselski, P. F., and F. M. Weaver, 1974: ‘Early Pliocene temperature changes in the Antarctic seas.’ Geology, 1, 511–515.

    Article  Google Scholar 

  • Clark, D. L., 1982: ‘Origin, nature, and world climate effect of Arctic Ocean ice cover.’ Nature, 300, 321–325.

    Article  Google Scholar 

  • CLIMAP Project Members, A. Mclntyre, project leader, 1981: Seasonal reconstruction of the Earth’s surface at the last glacial maximum. Geol. Soc. Amer., Map and Chart Series, No. 36.

    Google Scholar 

  • Coakley, J. A., and R. D. Cess, 1985: ‘Response of the NCAR Community Climate Model to the radiative forcing by the naturally occurring tropospheric aerosol.’ J. Atmos. Sci., 42, 1677–1692.

    Article  Google Scholar 

  • Cox, M. D., 1985: ‘An eddy resolving model of the ventilated thermocline.’ J. Phys. Oceanog., 15, 1312–1324.

    Article  Google Scholar 

  • Crowley, T. J., 1981: ‘Temperature and circulation changes in the eastern North Atlantic during the last 150,000 years: Evidence from the planktonlc foraminiferal record.’ Mar. Micropaleontol., 6, 97–129.

    Article  Google Scholar 

  • Crowley, T. J., 1983: ‘The geologic record of climatic change.’ Rev. Geophys. Space Phys., 21, 828–877.

    Article  Google Scholar 

  • Crowley, T. J., and G. R. North, 1988: Paleoclimatology. Oxford University Press (in preparation).

    Google Scholar 

  • Crowley, T. J., and C. L. Parkinson, 1987: ‘Late Pleistocene variations in Antarctic sea ice. I: Effect of changes in interhemispheric deep ocean heat transport.’ Climate Dynamics (submitted).

    Google Scholar 

  • Crowley, T. J., J. G. Mengel and D. A. Short, 1987: ‘Gondwonaland’s seasonal cycle.’ Nature (in press).

    Google Scholar 

  • Crowley, T. J., D. A. Short, J. G. Mengel and G. R. North, 1986: ‘Role of seasonality in the evolution of climate over the last 100 million years.’ Science, 231, 579–584.

    Article  Google Scholar 

  • Curry, W. B., and T. J. Crowley, 1987: ‘Carbon-13 in the equatorial Atlantic: Implications for ice-age CO2 fluctuations.’ Paleoceanography (in press).

    Google Scholar 

  • Defant, A., 1961: Physical Oceanography, Vol. 1, Pergamon, New York, 729 pp.

    Google Scholar 

  • Denton, G. H., and T. J. Hughes, 1981: The Last Great Ice Sheets, Wiley, New York, 483 pp.

    Google Scholar 

  • Denton, G. H., 1985: ‘Did the Antarctic Ice Sheet influence Late Cainozoic climate and evolution in the Southern Hemisphere?’ African J. Sci., 81, 224–229.

    Google Scholar 

  • Dickinson, R. E., and R. J. Cicerone, 1986: ‘Future global warming from atmospheric trace gases.’ Nature, 319, 109–115.

    Article  Google Scholar 

  • Donn, W. L., and D. M. Shaw, 1977: ‘Model of climate evolution based on continental drift and polar wandering.’ Geol. Soc. Amer. Bull., 88, 390–396.

    Article  Google Scholar 

  • Douglas, R. G., and F. Woodruff, 1981: ‘Deep sea benthic foraminifera.’ In The Sea, V. 7, ed. C. Emiliani, Wiley-Interscience, New York, 1233–1327.

    Google Scholar 

  • Epstein, S., R. Buchsbaum, H. A. Lowenstam and H.C. Urey, 1953: ‘Revised carbonate-water isotopic temperature scale.’ Geol. Soc. Amer. Bull., 64, 1315–1326.

    Article  Google Scholar 

  • Erickson, D. J., and S. M. Dickson, 1986: ‘Selective trace element toxification of Mesozoic marine biota: The meteoritic scenario.’ Paleoceanography (submitted).

    Google Scholar 

  • Estes, R., and J. H. Hutchinson, 1980: ‘Eocene lower vertebrates from Ellesmere Island, Canadian Arctic Archipelago.’ Palaeogeog., Palaeoclim., Palaeoecol, 30, 325–347.

    Article  Google Scholar 

  • Funder, S., N. Abrahamsen, O. Bennike and R. W. Feyling-Hanssen, 1985: ‘Forested Arctic: Evidence from north Greenland.’ Geology, 13, 542–546.

    Article  Google Scholar 

  • Gates, W. L., 1976a: ‘Modeling the ice-age climate.’ Science, 191, 1138–1144.

    Article  Google Scholar 

  • Gates, W. L., 1976b: ‘The numerical simulation of ice-age climate with a global general circulation model.’ J. Atmos. Sci., 33, 1844–1873.

    Article  Google Scholar 

  • Gordon, A. L., 1981: ‘Seasonality of Southern Ocean sea ice.’ J. Geophys. Res., 86, 4193–4197.

    Article  Google Scholar 

  • Gordon, W. A., 1975: ‘Distribution by latitude of Phanerozoic evaporite deposits.’ J. Geol., 83, 671–684.

    Article  Google Scholar 

  • Hambrey, H. A., and W. B. Harland (Eds.), 1981: Earth’s Pre-Pleistocene Glacial Record, Cambridge Univ. Press, 1024 pp.

    Google Scholar 

  • Hammer, C. U., H. B. Clausen, W. Dansgaard, A. Neftel, P. Kristinsdottir and E. Johnson, 1985: ‘Continuous impurity analysis along the Dye 3 deep core.’ In Greenland Ice Core: Geophysics, Geochemistry, and the Environment, Geophys. Mono. 33, Amer. Geophys. Union, Washington, DC, 90–94.

    Chapter  Google Scholar 

  • Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy and J. Lerner, 1984: ‘Climate sensitivity: Analysis of feedback mechanisms.’ In: Climate Processes and Climate Sensitivity, eds. J. E. Hansen and T. Takahashi, Geophys. Mono. 29, Amer. Geophys. Union, Washington, DC, 130–163.

    Chapter  Google Scholar 

  • Hastenrath, S., 1980: ‘Heat budget of tropical ocean and atmosphere.’ J. Phys. Oceanog., 10, 159–170.

    Article  Google Scholar 

  • Hays, J. D., J. Imbrie and N. J. Shackleton, 1976: ‘Variation in the Earth’s orbit: Pacemaker of the ice ages.’ Science, 194, 1121–1132.

    Article  Google Scholar 

  • Hecht, A. D. (Ed.), 1985: Paleoclimate Analysis and Modeling. Wiley-Interscience, New York, 445 pp.

    Google Scholar 

  • Herron, M. M., and C. C. Langway, 1985: ‘Chloride, nitrate, and sulfate in the Dye 3 and Camp Century, Greenland ice cores.’ In Greenland Ice Core: Geophysics, Geochemistry, and the Environment, eds. C. C. Langway, H. Oeschger and W. Dansgaard, Geophys. Mono. 33, Amer. Geophys. Union, Washington, DC, 77–84.

    Chapter  Google Scholar 

  • Held, I. M., 1982: ‘Climate models and the astronomical theory of the ice ages.’ Icarus, 50, 449–461.

    Article  Google Scholar 

  • Hester, K., and E. Boyle, 1982: ‘Water chemistry control of cadmium content in recent benthic foraminifera.’ Nature, 298, 260–262.

    Article  Google Scholar 

  • Hodell, D. A, K. R. Elmstrom and J. P. Kennett, 1986: ‘Latest Miocene benthic 18O changes, global ice volume, sea level, and the “Messinian salinity crisis”.’ Nature, 320, 411–414.

    Article  Google Scholar 

  • Hollin, J. T., 1980: ‘Climate and sea level in isotope stage 5: An East Antarctic ice surge at 95,000 BP?’ Nature, 283, 629–633.

    Article  Google Scholar 

  • Hsu, K. J., and J. A. Menzie, 1985: ‘A “Strangelove” ocean in the earliest Tertiary.’ In The Carbon Cycle and Atmospheric CO?: Natural Variations Archean to Present, eds. E. T. Sundqulst and W. S. Broecker, Geophys. Mono. 32, Amer. Geophys. Union, Washington, DC, 487–492.

    Chapter  Google Scholar 

  • Hughes, T. J., G. H. Denton, B. G. Andersen, D. H. Schilling, J. L. Fastbook and C. S. Lingle, 1981: ‘The last great ice sheets: A global view.’ In The Last Great Ice Sheets, eds. G. H. Denton and T. J. Hughes, Wiley, New York, 263–317.

    Google Scholar 

  • Janecek, T. R., and D. K. Rea, 1985: ‘Quaternary fluctuations in the northern hemisphere trade winds and westerlies.’ Quat. Res., 24, 150–163.

    Article  Google Scholar 

  • Jones, P. D., T. M. L. Wigley and S. C. B. Raper, 1987: ‘The rapidity of CO2-induced climatic change: Observations, model results, and palaeoclimatic implications.’ In Abrupt Climatic Changes, Proceedings of a NATO/NSF Workshop, eds. L. D. Labeyrie and W. Berger, Reidel, Dordrecht.

    Google Scholar 

  • Keigwin, L. D., and E. A. Boyle, 1985: ‘Carbon isotopes in deep-sea benthic foraminifera: Precession and changes in low-latitude biomass.’ In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, eds. E. T. Sundquist and W. S. Broecker, Geophys. Mono. 32, Amer. Geophys. Union, Washington, DC, 319–328.

    Chapter  Google Scholar 

  • Keigwin, L. D., and B. H. Corliss, 1986: ‘Stable isotopes in late middle Eocene to Oligocene foraminifera.’ Geol. Soc Amer. Bull., 97, 335–345.

    Article  Google Scholar 

  • Kellogg, W. W., and R. Schware, 1981: Climate Change and Society. Westview Press, Boulder, Colo., 178 pp.

    Google Scholar 

  • Kennett, J. P., 1977: ‘Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoeanography.’ J. Geophys. Res., 82, 3843–3860.

    Article  Google Scholar 

  • Kennett, J. P., 1985: ‘Neogene palaeoceanography and plankton evolution.’ S. African J. Sci., 81, 251–253.

    Google Scholar 

  • Kiehl, J. T., and V. Ramanathan, 1982: Radiative heating due to increased CO2: The role of the H2O continuum absorption in the 12–18 um region. J. Atmos. Sci., 39, 2923–2926.

    Article  Google Scholar 

  • Kipp, N. G., 1976: ‘New transfer function for estimating sea-surface conditions from sea-bed distribution of planktonic foraminiferal assemblages in the North Atlantic.’ Geol. Soc. Amer. Mem., 145, 3–42.

    Google Scholar 

  • Kutzbach, J. E., 1985: ‘Modeling of paleoclimate.’ Adv. Geophys., 28A, 159–196.

    Article  Google Scholar 

  • Kutzbach, J. E., and P. J. Guetter, 1984: ‘The sensitivity of monsoon climates to orbital parameter changes for 9000 years BP: Experiments with the NCAR general circulation model.’ In Milankovitch and Climate, Pt. 2, eds. A. Berger, J. Imbrie, J. D. Hays, G. J. Kukla and B. Saltzman, Reidel, Dordrecht, 801–820.

    Google Scholar 

  • Kutzbach, J. E., and P. J. Guetter, 1986: ‘The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years.’ J. Atmos. Sci., 43, 1726–1759.

    Article  Google Scholar 

  • Kutzbach, J. E., and B. Otto-Bliesner, 1982: ‘The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years BP In a low-resolution general circulation model.’ J. Atmos. Sci., 39, 1177–1188.

    Article  Google Scholar 

  • Kutzbach, J. E., and F. A. Street-Perrott, 1985: ‘Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP.’ Nature, 317, 130–134.

    Article  Google Scholar 

  • Kutzbach, J. E., and H. E. Wright, 1985: Simulation of the climate of 18,000 yr BP: Results for the North American/North Atlantic/ European sector and comparison with the geologic record.’ Quat. Sci. Rev., 4, 147–187.

    Article  Google Scholar 

  • Kyte, F. T., J. Smit and J. T. Wasson, 1985: ‘Siderophile interelement variations in the Cretaceous-Tertiary boundary sediments from Caravaca, Spain.’ Earth and Planet. Sci. Lett., 73, 183–195.

    Google Scholar 

  • Lasaga, A. C., R. A. Berner and R. M. Garrels, 1985: ‘An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years.’ In:The Carbon Cycle and Atmospheric CO?: Natural Variations Archean to Present, eds. E. T. Sundquist and W. S. Broecker, Geophys. Mono. 32, Amer. Geophys. Union, Washington, DC, 397–411.

    Chapter  Google Scholar 

  • Lewis, J. S., G. H. Watkins, H. Hartman and R. G. Prinn, 1982: ‘Chemical consequences of major impact events on Earth.’ Geol. Soc. Amer. Spec. Paper 190, 215–222.

    Google Scholar 

  • Liu, K-B., and P. A. Colinvaux, 1985: ‘Forest changes in the Amazon Basin in the last glacial maximum.’ Nature, 318, 556–557.

    Article  Google Scholar 

  • Lohmann, G. P., and J. J. Carlson, 1981: ‘Oceanographic significance of Pacific Late Miocene calcareous nannoplankton.’ Mar. Micropaleontol., 6, 553–579.

    Article  Google Scholar 

  • Loutit, T. S., J. P. Kennett and S. M. Savin, 1983: ‘Miocene equatorial and southwest Pacific paleoceanography from stable isotope evidence.’ Mar. Micropaleontol., 8, 215–233.

    Article  Google Scholar 

  • Luyendyk, B. P., D. Forsyth and J. D. Phillips, 1972: ‘Experimental approach to the paleocirculation of the oceanic surface waters.’ Geol. Soc. Amer. Bull., 83, 2649–2664.

    Article  Google Scholar 

  • Malone, R. C., L. H. Auer, G. A. Glatzmaier and M. C. Wood, 1986: ‘Nuclear winter: Three-dimensional simulations including interactive transport, scavenging, and solar heating of smoke.’ J. Geophys. Res., 91, 1039–1053.

    Article  Google Scholar 

  • Manabe, S., and A. J. Broccoli, 1985a: ‘The influence of continental ice sheets on the climate of an ice age.’ J. Geophys. Res., 90, 2167–2190.

    Article  Google Scholar 

  • Manabe, S., and A. J. Broccoli, 1985b: ‘A comparison of climate model sensitivity with data from the last glacial maximum.’ J. Atmos. Sci., 42, 2643–2651.

    Article  Google Scholar 

  • Manabe, S., and K. Bryan, 1985: ‘CO2-induced change in a coupled ocean-atmosphere model and its paleoclimatic implications.’ J. Geophys. Res., 90, 11, 689–11,708.

    Google Scholar 

  • Manabe, S., and D. G. Hahn, 1977: ‘Simulation of the tropical climate of an ice age.’ J. Geophys. Res., 82, 3889–3911.

    Article  Google Scholar 

  • Manabe, S., and R. J. Stouffer, 1980: ‘Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere.’ J. Geophys. Res., 85, 5529–5554.

    Article  Google Scholar 

  • Manabe, S., and R. T. Wetherald, 1967: ‘Thermal equilibrium of the atmosphere with a given distribution of relative humidity.’ J. Atmos. Sci., 24, 241–259.

    Article  Google Scholar 

  • Manabe, S., and R. T. Wetherald, 1980: ‘On the distribution of climate change resulting from an increase of CO2 content in the atmosphere.’ J. Atmos. Sci., 37, 99–118.

    Article  Google Scholar 

  • Manabe, S., and R. T. Wetherald, 1986: ‘Reduction in summer soil wetness induced by an increase in atmospheric carbon dioxide.’ Science, 232, 626–628.

    Article  Google Scholar 

  • Matthews, R. K., and R. Z. Poore, 1980: ‘Tertiary 18O record and glacioeustatic sea level fluctuation.’ Geology, 8, 501–504.

    Article  Google Scholar 

  • Mayewski, P. A., G. H. Denton and T. J. Hughes, 1981: ‘Late Wisconsin ice sheets in North America.’ In The Last Great Ice Sheets, eds. G. H. Denton and T. J. Hughes, Wiley, New York, 67–178.

    Google Scholar 

  • Mclntyre, A., et al., 1976: ‘The glacial North Atlantic 18,000 years ago: A CLIMAP reconstruction.’ Geol. Soc. Amer. Mem., 145, 43–76.

    Google Scholar 

  • Menna, M. C., 1980: ‘Eocene paleolatitude, climate, and mammals of Ellesmere Island.’ Palaeogeog., Palaeoclim., Palaeoecol., 30, 349–362.

    Article  Google Scholar 

  • Mengel, J. G., D. A. Short and G. R. North, 1987: ‘Seasonal snowline instability in an energy balance model.’ Clim. Dynam. (in press).

    Google Scholar 

  • Mercer, J. H., 1978: ‘West Antarctic ice sheet and CO2 greenhouse effect: A threat of disaster.’ Nature, 271, 321–325.

    Article  Google Scholar 

  • Mesolella, K. J., R. K. Matthews, W. S. Broecker and D. L. Thurber, 1969: ‘The astronomical theory of climatic change: Barbados data.’ J. Geol., 77, 250–274.

    Article  Google Scholar 

  • Molfino, B., N. G. Kipp and J. J. Morley, 1982: ‘Comparison of foraminiferal, coccolithophorid, and radiolarian paleotemperature equations: Assemblage coherency and estimate concordancy.’ Quat. Res., 17, 279–313.

    Article  Google Scholar 

  • Moore, T. C., W. H. Hutson, N. Kipp, J. D. Hayes, W. Prell, P. Thompson and G. Boden, 1981: ‘The biological record of the ice-age ocean.’ Palaeogeog., Palaeoclim., Palaeoecol., 35, 357–370.

    Article  Google Scholar 

  • Mott, R. J., D. R. Grant, R. Stea and S. Occhietti, 1986: ‘Late-glacial climatic oscillations in Atlantic Canada equivalent to the Allerod/ Younger Dryas event.’ Nature, 323, 247–250.

    Article  Google Scholar 

  • National Research Council, 1982: Carbon Dioxide and Climate: A second assessment. Nat. Acad. Sci., Washington, DC, 72 pp.

    Google Scholar 

  • Neftel, A., E. Moor, H. Oeschger and B. Stauffer, 1985: ‘Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature, 315, 45–47.

    Article  Google Scholar 

  • Newell, R. E., 1974: ‘Changes in poleward energy flux by the atmosphere and ocean as a possible cause for ice ages.’ Quaternary. Res., 4, 117–127.

    Article  Google Scholar 

  • Njoku, E. G., 1985: ‘Satellite-derived sea-surface temperature: Workshop comparisons.’ Bull. Amer. Meteor. Soc., 66, 274–281.

    Article  Google Scholar 

  • Norris, G., 1982: ‘Spore-pollen evidence for early Oligocene high-latitude cool climatic episode in northern Canada.’ Nature, 297, 387–389.

    Article  Google Scholar 

  • North, G. R., 1984: ‘The small ice cap instability in diffusive climate models.’ J. Atmos. Sci., 41, 3390–3395.

    Article  Google Scholar 

  • North, G. R., 1988: ‘Lessons from energy balance models.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. II, M. E. Schlesinger, ed., Kluwer Academic Publishers, 627–652.

    Google Scholar 

  • North, G. R., and T. J. Crowley, 1985: ‘Application of a seasonal climate model to Cenozoic glaciation.’ J. Geol. Soc. (London), 142, 475–482.

    Article  Google Scholar 

  • North, G. R., J. G. Mengel and D. A. Short, 1983:’Simple energy balance model resolving the seasons and the continents: Application to the astronomical theory of the ice ages.’ J. Geophys. Res., 88, 6576–6586.

    Article  Google Scholar 

  • Oeschger, H., J. Beer, U. Siegenthaler, B. Stauffer, W. Dansgaard and C. C. Langway, 1984: ‘Late glacial climate from ice cores.’ In: Climate Processes and Climate Sensitivity, eds. J. E. Hansen and T. Takahashi, Geophys. Mono. 29, Amer. Geophys. Union, Washington, DC, 299–306.

    Chapter  Google Scholar 

  • O’Keefe, J. D., and T. J. Ahrens, 1982: ‘The interaction of the Cretaceous/Tertiary extinction bolide with the atmosphere, ocean, and solid Earth.’ Geol. Soc. Amer. Spec. Pap. 190, 103–120.

    Google Scholar 

  • Oort, A. H., and T. H. Vonder Haar, 1976: ‘On the observed annual cycle in the ocean-atmosphere heat balance over the northern hemisphere.’ J. Phys. Oceanog., 6, 781–800.

    Article  Google Scholar 

  • Oppo, D. W., and R. G. Fairbanks, 1987: ‘Variability in the southern polar ocean during the past 25,000 years: Northern Hemisphere modulation.’ Earth Plan. Sci. Lett, (in press).

    Google Scholar 

  • Parkinson, C. L., and R. A. Bindschadler, 1984: ‘Response of Antarctic sea ice to uniform atmospheric temperature increases.’ In :Climate Processes and Climate Sensitivity, eds. J. E. Hansen and T. Takahashi, Geophys. Mono. 29, Amer. Geophys. Union, Washington, DC, 254–264.

    Chapter  Google Scholar 

  • Parkinson, C. L., and W. W. Kellogg, 1979: ‘Arctic sea ice decay simulated for a CO2 induced temperature rise.’ Clim. Change, 2, 149–162.

    Article  Google Scholar 

  • Parkinson, C. L., and W. M. Washington, 1979: ‘A large-scale numerical model of sea ice.’ J. Geophys. Res., 84, 311–337.

    Article  Google Scholar 

  • Petit, J. R., M. Briat and A. Royer, 1981: ‘Ice age aerosol content from East Antarctic ice core samples and past wind strength.’ Nature, 293, 391–394.

    Article  Google Scholar 

  • Philander, S. G. H., and N.-C. Lau, 1988: ‘Predictability of El Nino.’In: Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. II, M. E. Schlesinger, ed., Kluwer Academic Publishers, 967–982.

    Google Scholar 

  • Prabhakara, C., D. A. Short and B. E. Vollmer, 1985: ‘El Nino and atmospheric water vapor: Observations from Nimbus 7 SMMR.’ J. Clim. Appl. Meteorol., 24, 1311–1324.

    Article  Google Scholar 

  • Prance, G. T., 1982: ‘Forest refuges: Evidence from woody angiosperms.’ In: Biological Diversification in the Tropics, ed. G. T. Prance, Columbia Univ. Press, New York, 137–158.

    Google Scholar 

  • Prell, W. L., 1984: ‘Covariance patterns of foraminiferal 0: An evaluation of Pliocene ice volume changes near 3.2 million years ago.’ Science, 226, 692–694.

    Article  Google Scholar 

  • Prell, W. L., 1985: ‘The stability of low-latitude sea-surface temperatures: An evaluation of the CLIMAP reconstruction with emphasis on the positive SST anomalies.’ U.S. Dept. of Energy Contract Report, Contract No. DE-AC02–83ER60167, 60 pp.

    Google Scholar 

  • Ramanathan, V., 1981: ‘The role of ocean-atmosphere interactions in the C02 climate problem.’ J. Atmos. Sci., 38, 918–930.

    Article  Google Scholar 

  • Rasmusson, E. M., and T. H. Carpenter, 1983: ‘The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka.’ Mon. Wea. Rev., 111, 517–528.

    Article  Google Scholar 

  • Reid, J. L., and R. J. Lynn, 1971: ‘On the influence of the Norwegian-Greenland and Weddell Seas upon the bottom water of the Indian and Pacific Oceans.’ Deep-Sea Res., 18, 1963–1988.

    Google Scholar 

  • Rind, D., 1986: ‘The dynamics of warm and cold climates.’ J. Atmos. Sci., 43, 3–24.

    Article  Google Scholar 

  • Rind, D., and D. Peteet, 1985: ‘Terrestrial conditions at the last glacial maximum and CLIMAP sea-surface temperature estimates: Are they consistent?’ Quat. Res., 24, 1–22.

    Article  Google Scholar 

  • Rubey, W. W., 1951: ‘Geologic history of seawater.’ Geol. Soc. Amer. Bull., 62, 1111–1148.

    Article  Google Scholar 

  • Ruddiman, W. F., and A. Mclntyre, 1981a: ‘The North Atlantic Ocean during the last déglaciation.’ Palaeogeog., Palaeoclim., Palaeoecol., 35, 145–214.

    Article  Google Scholar 

  • Ruddiman, W. F., and A. Mclntyre, 1981b: ‘Oceanic mechanisms for amplification of the 23,000-year ice-volume cycle.’ Science, 212, 617–627.

    Article  Google Scholar 

  • Russell, D. A., 1979: ‘The enigma of the extinction of the dinosaurs.’ Ann. Rev. Earth Planet. Sci., 7, 163–182.

    Article  Google Scholar 

  • Russell, D. A., 1982: ‘The mass extinctions of the Late Mesozoic.’ Sci. Amer., 246, 48–55.

    Article  Google Scholar 

  • Saltzman, B., 1985: ‘Paleoclimate modeling.’ In Paleoclimate Analysis and Modeling, ed. A. D. Hecht, Wiley-Interscience, New York, 341–396.

    Google Scholar 

  • Saltzman, B., 1988: ‘Modelling the slow climatic attractor.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. II, M. E. Schlesinger, ed., Kluwer Academic Publishers, 737–754.

    Google Scholar 

  • Sarntheim, M., G. Tetzlaff, B. Koopmann, K. Wolter and U. Pflaumann, 1981: ‘Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa.’ Nature, 293, 193–196.

    Article  Google Scholar 

  • Savin, S. M., 1977: ‘The history of the Earth’s surface temperature during the past 100 million years.’ Ann. Rev. Earth Planet. Sci., 5, 319–355.

    Article  Google Scholar 

  • Schlesinger, M. E., 1984: ‘Climate model simulations of CO2-induced climatic change.’ Adv. Geophys., 26, 141–235.

    Article  Google Scholar 

  • Schlesinger, M. E., and J. F. B. Mitchell, 1985: ‘Model projections of the equilibrium climatic response to increased carbon dioxide.’ In Projecting the Climatic Effects of Increasing Carbon Dioxide, eds. M. C. Maracken and F. M. Luther, U.S. Dept. of Energy DOE/ER-0237, 81–147.

    Google Scholar 

  • Schneider, S. H., and R. E. Dickinson, 1974: ‘Climate modeling.’ Rev. Geophys. Space Phys., 12, 447–493.

    Article  Google Scholar 

  • Schneider, S. H., S. L. Thompson and E. J. Barron, 1985: ‘Mid-Cretaceous continental surface temperatures: Are high CO2 concentrations needed to simulate above freezing winter conditions?’ In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, eds. E. T. Sundquist and W. S. Broecker, Geophys. Mono. 32, Amer. Geophys. Union, Washington, DC, 554–560.

    Chapter  Google Scholar 

  • Seidov, D. G., 1986: Numerical modelling of the ocean circulation and paleocirculation. In Mesozoic and Cenozolc Oceans, ed. K. Hsu, Geodynamic Series, Vol. 15, Am. Geophys. Union, Wash., D.C., 11–26.

    Chapter  Google Scholar 

  • Sellers, P. J., Y. Mintz, Y. C. Sud and A. Dalcher, 1986: ‘A simple biosphere model (S) for use within general circulation models.’ J. Atmos. Sci., 43, 505–531.

    Article  Google Scholar 

  • Shackleton, N. J., 1977: ‘Carbon-13 in Uvigerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles.’ In The Fate of Fossil Fuel CO2 in the Oceans, eds. N. R. Andersen and A. Malahoff, Plenum, New York, 401–428.

    Google Scholar 

  • Shackleton, N. J., 1985: ‘Oceanic carbon isotope constraints on oxygen and carbon dioxide in the Cenozoic atmosphere.’ In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, eds. E. T. Sundquist and W. S. Broecker, Geophys. Mono. 32, Amer. Geophys. Union, Washington, DC, 412–418.

    Chapter  Google Scholar 

  • Shackleton, N. J., and A. Boersma, 1981: ‘The climate of the Eocene ocean.’ J. Geol. Soc. (London), 138, 153–157.

    Article  Google Scholar 

  • Shackleton, N. J., and J. Chappell, 1986: ‘Oxygen isotopes and sea level.’ Nature, 324, 137–140.

    Article  Google Scholar 

  • Shackleton, N. J., and N. G. Pisias, 1985: ‘Atmospheric carbon dioxide, orbital forcing, and climate.’ In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, eds. E. T. Sundquist and W. S. Broecker, Geophys. Mono. 32, Amer. Geophys. Union, Washington, DC, 303–317.

    Chapter  Google Scholar 

  • Shackleton, N. J., M. A. Hall, J. Line and C. Shuxi, 1983: ‘Carbon isotope data in core V19–30 confirm reduced carbon dioxide concentration of the ice age atmosphere.’ Nature, 306, 319–322.

    Article  Google Scholar 

  • Shackleton, N. J., et al., 1984: ‘Oxygen isotope calibration of the onset of ice-raiting and history of glaciation in the North Atlantic region.’ Nature, 307, 620–623.

    Article  Google Scholar 

  • Short, D. A., G. R. North, T. D. Bess and G. L. Smith, 1984: ‘Infrared parameterization and simple climate models.’ J. Clim. Appl. Meteorol., 23, 1222–1233.

    Article  Google Scholar 

  • Spelman, M. J., and S. Manabe, 1984: ‘Influence of oceanic heat transport upon the sensitivity of a model climate,’ J. Geophys. Res., 89, 571–586.

    Article  Google Scholar 

  • Stauffer, B., A. Neftel, H. Oeschger and J. Schwander, 1985: ‘CO2 concentration in air extracted from Greenland ice samples.’ In Greenland Ice Core: Geophysics, Geochemistry, and the Environment, eds. C. C. Langway, H. Oeschger and W. Dansgaard, Geophys. Mono. 33, Amer. Geophys. Union, Washington, DC, 85–90.

    Chapter  Google Scholar 

  • Stommel, H., 1979: ‘Oceanic warming of western Europe.’ Proc. Natl. Acad. Sci., 76, 2518–2521.

    Article  Google Scholar 

  • Stone, P. H., 1978: ‘Constraints of dynamical transports of energy on a spherical planet.’ Dyn. Atmos. Oc., 2, 123–139.

    Article  Google Scholar 

  • Street-Perrott, F. A., and S. P. Harrison, 1984: ‘Temporal variations in lake levels since 30,000 yr BP - An index of the global hydrologic cycle.’ In: Climate Processes and Climate Sensitivity, eds. J. E. Hansen and T. Takahashi, Geophys. Mono. 29, Amer. Geophys. Union, Washington, DC, 118–129.

    Chapter  Google Scholar 

  • Stuiver, M., G. H. Denton, T. J. Hughes and J. L. Fastook, 1981: ‘History of marine ice sheet in West Antarctica during the last glaciation: A working hypothesis.’ In: The Last Great Ice Sheets, eds. G. H. Denton and T. J. Hughes, Wiley, New York, 319–436.

    Google Scholar 

  • Suarez, M. J., and I. M. Held, 1979: ‘The sensitivity of an energy balance climate model to variations in the orbital parameters.’ J. Geophys. Res., 84, 4825–4836.

    Article  Google Scholar 

  • Sundquist, E. T., 1985: ‘Geological perspectives on carbon dioxide and the carbon cycle.’ In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, eds. E. T. Sundquist and W. S. Broecker, Geophys. Mono. 32, Amer. Geophys. Union, Washington, DC, 5–60.

    Chapter  Google Scholar 

  • Taylor, K. E., 1984: ‘Fourier representations of orbitally induced perturbations in seasonal insolation.’ In Milankovltch and Climate, Pt. I, eds. A. Berger, J. Imbrie, J. D. Hays, G. J. Kukla and B. Saltzman, Reidel, Dordrecht, 113–125 pp.

    Google Scholar 

  • Thomas, R. H., 1984: ‘Ice sheet margins and ice shelves.’ In Climate Processes and Climate Sensitivity, eds. J. E. Hansen and T. Takashashi, Geophys. Mono. 29, Amer. Geophys. Union, Washington, DC, 265–274.

    Chapter  Google Scholar 

  • Thompson, S. L., and E. J. Barron, 1981: ‘Comparison of Cretaceous and present earth albedos: Implications for the causes of paleoclimates.’ J. Geol., 89, 143–167.

    Article  Google Scholar 

  • Toon, O. B., J. B. Pollack, T. P. Ackerman, R. D. Turco, C. P. May and M. S. Liu, 1982: ‘Evolution of an impact-generated dust cloud and its effects on the atmosphere.’ Geol. Soc. Amer. Spec. Paper 190, 187–200.

    Google Scholar 

  • Trenberth, K. E., 1979: ‘Mean annual poleward energy transports by the oceans In the Southern Hemisphere.’ Dyn. Atmos. Oc., 4, 57–64.

    Article  Google Scholar 

  • Tschudy, R. H., C. L. Pillmore, C. J. Orth, J. S. Gilmore and J. D. Knight, 1984: ‘Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, western interior.’ Science, 225, 1030–1032.

    Article  Google Scholar 

  • Turco, R. P., O. B. Toon, T. P. Ackerman, J. B. Pollack and C. Sagan, 1983: ‘Nuclear winter: Global consequences of multiple nuclear explosions.’ Science, 222, 1283–1292.

    Article  Google Scholar 

  • von Arx, W. S., 1952: ‘A laboratory study of the wind-driven ocean circulation.’ Tellus, 4, 311–318.

    Article  Google Scholar 

  • von Arx, W. S., 1957: ‘An experimental approach to problems in physical oceanography.’ In Progress in Physics and Chemistry of the Earth, V. 2, Pergamon, New York, 1–29.

    Google Scholar 

  • Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey, Academic Press, New York, 467 pp.

    Google Scholar 

  • Washington, W., and G. Meehl, 1984: ‘Seasonal cycle experiment on the climate sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed layer ocean.’ J. Geophys. Res., 89, 9475–9503.

    Article  Google Scholar 

  • Watts, R. G., and M. Hayder, 1984a: ‘The effect of land-sea distribution on ice sheet formation.’ Ann. Glac., 5, 234–236.

    Google Scholar 

  • Watts, R. G., and M. Hayder, 1984b: ‘A possible explanation of differences between pre- and post-Jaramillo ice sheet growth.’ In Milankovitch and Climate, eds. A. L. Berger, J. Imbrie, J. D. Hays, G. J. Kukla and B. Saltzman, Reidel, Dordrecht, 599–604.

    Google Scholar 

  • Webb, P. N., D. M. Harwood, B. C. Melvey, J. H. Mercer and L. D. Stott, 1984: ‘Cenozoic marine sedimentation and ice-volume variation on the East Antarctic craton.’ Geology, 12, 287–291.

    Article  Google Scholar 

  • Webb, T., 1985: ‘Holocene palynology and climate.’ Til Paleoclimate Analysis and Modeling, ed. A. D. Hecht, Wiley-Interscience, New York, 163–196.

    Google Scholar 

  • Webster, P. N., and N. Streten, 1978: ‘Late Quaternary ice age climates of tropical Australasia, interpretation and reconstruction.’ Quat. Res., 10, 279–309.

    Article  Google Scholar 

  • Weyl, P. K., 1968: ‘The role of the ocean in climatic change: A theory of the ice ages.’ Meteorol. Monogr., 8, 37–62.

    Google Scholar 

  • Wigley, T. M. L., and B. D. Santer, 1988: ‘Validation of general circulation climate models.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. II, M. E. Schlesinger, ed., Kluwer Academic Publishers, 841–879.

    Google Scholar 

  • Wigley, T. M. L., and P. D. Jones, 1985: ‘Influence of precipitation changes and direct CO2 effects on streamflow.’ Nature, 314, 149–152.

    Article  Google Scholar 

  • Wilson, A. T., 1969: ‘The climatic effects of large-scale surges of ice sheets.’ Can. J. Earth Sci., 6, 911–918.

    Article  Google Scholar 

  • Wohlbach, W. S., R. S. Lewis and E. Anders, 1985: ‘Cretaceous extinctions: Evidence for wildfires and search for meteoritic material.’ Science, 230, 167–170.

    Article  Google Scholar 

  • Woillard, G. M., and W. G. Mook, 1982: ‘Carbon-14 dates at Grande Pile: Correlation of land and sea chronologies.’ Science, 215, 159–161.

    Article  Google Scholar 

  • Wolfe, J. A., 1978: ‘A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere.’ Amer. Sci., 66, 694–703.

    Google Scholar 

  • Woodruff, F., S. M. Savin and R. G. Douglas, 1981: ‘Miocene stable isotope record: A detailed deep Pacific Ocean study and its paleoclimatic implications.’ Science, 212, 665–668.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Crowley, T.J. (1988). Paleoclimate Modelling. In: Schlesinger, M.E. (eds) Physically-Based Modelling and Simulation of Climate and Climatic Change. NATO ASI Series, vol 243. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3043-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3043-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7868-9

  • Online ISBN: 978-94-009-3043-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics