Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 243))

Abstract

Zonally-averaged climate models (ZACMs) provide a bridge from one-dimensional models such as energy-balance and radiative-convective models to three-dimensional general circulation models. Each type of model in this hierarchy involves particular simplifications, assumptions, and complexities in its development. As a consequence, each type of model presents particular advantages and disadvantages in the investigation of questions of importance toward a better understanding of climate. While representation of the influence of horizontal eddies on the meridional climatic structure presents special difficulties for a ZACM, the inclusion of latitudinal and altitudinal variations, and the absence of synoptically-generated climatic variability, permit the investigation of a range of climatic perturbations in which the forcing function is relatively small, latitudinally limited, or transient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, D. G., and M. E. McIntyre, 1978: ‘Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres.’ J. Atmos. Sci., 35, 175–185.

    Google Scholar 

  • Berlyand, T. G., L. A. Strokina and L. E. Greshnikova, 1980: ‘Zonal cloud distribution on the Earth.’ Meteorologiya i Gidrologiya, 3, 15–23.

    Google Scholar 

  • Bourke, W., 1974: ‘A multi-level spectral model. I. Formulation and hermispheric integrations.’ Mon. Wea. Rev., 102, 687–701.

    Google Scholar 

  • Boyd, J. P., 1976: ‘The noninteraction of waves with zonally averaged flow on a spherical Earth and the interrelationships of eddy fluxes of energy, heat and momentum.’ J. Atmos. Sci., 33, 2285–2291.

    Google Scholar 

  • Branscome, L. E., 1983: ‘A parameterization of transient eddy heat flux on a beta-plane.’ J. Atmos. Sci., 40, 2508–2521.

    Google Scholar 

  • Braslau, N., and J. V. Dave, 1973: ‘Effects of aerosols on the transfer of solar energy through realistic model atmospheres.’ J. Appl. Meteor., 12, 601–619.

    Google Scholar 

  • Cess, R. D., 1976: ‘Climate change: An appraisal of atmospheric feedback mechanisms employing zonal climatology.’ J. Atmos. Sci., 33, 1831–1843.

    Google Scholar 

  • Chao, W. C., 1985: ‘Sudden stratospheric warmings as catastrophes.’ J. Atmos. Sci., 42, 1631–1646.

    Google Scholar 

  • Charney, J. G., 1947: ‘The dynamics of long waves in a baroclinic westerly current.’ J. Meteor., 4, 135–162.

    Google Scholar 

  • Charney, J., 1975: ‘Dynamics of deserts and droughts in the Sahel.’ Quart. J. Roy. Meteor. Soc., 101, 193–202.

    Google Scholar 

  • Charney, J. G, and P. G. Drazin, 1961: ‘Propagation of planetary scale disturbances from the lower into the upper atmosphere.’ J. Atmos. Sci., 66, 83–109.

    Google Scholar 

  • Coakley, J. A., Jr., and R. D. Cess, 1985: ‘Response of the NCAR Community Climate Model to the radiative forcing by the naturally occurring tropospheric aerosol.’ J. Atmos. Sci., 112, 1677–1692.

    Google Scholar 

  • Coffin, M. D., 1967: ‘A numerical investigation of the energy balance of the planet Mars.’ Ph.D. thesis, University of California, Davis/Livermore (published as Lawrence Livermore Laboratory Report UCRL-50309).

    Google Scholar 

  • Crutcher, H. L., 1971: ‘Selected meridional cross sections of height, temperatures and dew points of the Northern Hemisphere.’ NAVAIR-50–16-59.

    Google Scholar 

  • Dickinson, R. E., 1971: ‘Analytic model for zonal winds in the tropics I. Details of the model and simulation of gross features of the zonal mean troposphere.’ Mon. Wea. Rev., 99, 501–510.

    Google Scholar 

  • Douglas, C. K. M., 1931: ‘A problem of the general circulation.’ Quart. J. Roy. Meteor. Soc., 57, 423–431.

    Google Scholar 

  • Eady, E. T., 1949: ‘Long waves and cyclone waves.’ Tellus, 1, 33–52.

    Google Scholar 

  • Ellingson, R. G., 1972: ‘A new longwave radiative transfer model: Calibration and application to the tropical atmosphere.’ Report 72–4, Department of Meteorology, Florida State University, 349 pp.

    Google Scholar 

  • Ellis, J. S., 1978: ‘Cloudiness, the radiation budget, and climate.’ Ph.D. thesis, Colorado State University, Ft. Collins, Colorado, 129 pp.

    Google Scholar 

  • Ellsaesser, H. W., M. C. Maracken, G. L. Potter and F. M. Luther, 1976: ‘An additional model test of positive feedback from high desert albedo.’ Quart. J. Roy. Met. Soc., 102, 655–666.

    Google Scholar 

  • Epstein, E. S., 1969: ‘Stochastic dynamic prediction.’ Tellus, 21, 739–757.

    Google Scholar 

  • Green, J. S. A., 1960: ‘A problem in baroclinic stability.’ Quart. J. Roy. Meteor. Soc., 86, 237–251.

    Google Scholar 

  • Green, J. S. A., 1970: ‘Transfer properties of the large-scale eddies and the general circulation of the atmosphere.’ Quart. J. Roy. Meteor. Soc., 96, 157–185.

    Google Scholar 

  • Hadley, G., 1735: ‘Concerning the cause of the general trade winds.’ Phil. Trans., 29, 58–62.

    Google Scholar 

  • Halley, E., 1686: ‘An historical account of the trade winds and monsoons observable in the seas between and near the tropics with an attempt to assign the physical cause of said winds.’ Phil. Trans., 26, 153–168.

    Google Scholar 

  • Handler, P., 1984: ‘Possible association of stratospheric aerosols and El Niño type events.’ Geophys. Res. Lett., 11, 1121–1124.

    Google Scholar 

  • Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy and L. Travis, 1983: ‘Efficient three-dimensional global models for climate studies: Models I and II.’ Mon. Wea. Rev., 111, 609–662.

    Google Scholar 

  • Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy and J. Lerner, 1984: ‘Climate sensitivity: Analysis of feedback mechanisms. In Climate Processes and Climate Sensitivity (Maurice Ewing Series, No. 5.), eds. J. E. Hansen and T. Takahashi, American Geophysical Union, Washington, D.C., 130–163.

    Google Scholar 

  • Held, I. M. 1978a: ‘Theories for transient baroclinic eddy fluxes.’ In The General Circulation: Theory, Modeling, and Observation. NCAR Summer Colloquium notes, pp. 224–235.

    Google Scholar 

  • Held, I. M., 1978b: ‘The vertical scale of an unstable baroclinic wave and its importance for eddy heat flux parameterizations.’ J. Atmos. Sci., 35, 572–576.

    Google Scholar 

  • Held, I. M., 1982: ‘On the height of the tropopause and the static stability of the troposphere.’ J. Atmos. Sci., 39, 412–417.

    Google Scholar 

  • Held, I. M., and A. Y. Hou, 1980: ‘Nonlinear axially symmetric circulations in a nearly inviscid atmosphere.’ J. Atmos. Sci., 37, 515–533.

    Google Scholar 

  • Hide, R., 1969: ‘Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid boundary surface of an electrically conducting rotating fluid in the presence of a magnetic field.’ J. Atmos. Sci., 26, 841–853.

    Google Scholar 

  • Holton, J. R., 1974: ‘Forcing of mean flows by stationary waves.’ Atmos. Sci., 31, 942–945.

    Google Scholar 

  • Holton, J. R., and C. Mass, 1976: ‘Stratospheric vacillation cycles.’ J. Atmos. Sci., 33, 2218–2225.

    Google Scholar 

  • Houghton, H. G., 1954: ‘On the annual heat balance of the Northern Hemisphere.’ J. Meteor., 11, 1–9.

    Google Scholar 

  • Killworth, P. D., 1980: ‘Barotropic and baroclinic instability in rotating stratified fluids.’ Dyn. Atmos. Oceans, 4, 143–184.

    Google Scholar 

  • Kirkwood, E., and J. Derome, 1977: ‘Some effects of the upper boundary condition and vertical resolution on modeling forced planetary waves.’ Mon. Wea. Rev., 105, 1239–1251.

    Google Scholar 

  • Kuo, H. L., 1956: ‘Forced and free meridional circulations in the atmosphere.’ J. Atmos. Sci., 13, 561–568.

    Google Scholar 

  • Kutzbach, J. E., and B. L. Otto-Bliesner, 1982: ‘The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B.P. in a low-resolution general circulation model.’ J. Atmos. Sci., 39, 1177–1188.

    Google Scholar 

  • Lacis, A. A., and J. E. Hansen, 1974: ‘A parameterization for the absorption of solar radiation in the Earth’s atmosphere.’ J. Atmos. Sci., 31, 118–133.

    Google Scholar 

  • Lau, N. C., and J. M. Wallace, 1979: ‘On the distribution of horizontal transports by transient eddies in the Northern Hemisphere winter time circulation.’ J. Atmos. Sci., 26, 1844–1861.

    Google Scholar 

  • Leith, C. E., 1965a: ‘Convection in a six-level model atmosphere’.Lawrence Livermore Laboratory Report UCRL-12415-T, presented at the International Symposium on Dynamics of Large-Scale Processes in the Atmosphere, Moscow, June 1965.

    Google Scholar 

  • Leith, C. E., 1965b: ‘Numerical simulation of the Earth’s atmosphere’.In Methods of Computational Physics, Vol. 4, ed. B. Alder, Academic Press, Inc., New York, 1–28.

    Google Scholar 

  • Leovy, C., 1964: ‘Simple models of thermally driven mesospheric circulation.’ J. Atmos. Sci., 21, 327–341.

    Google Scholar 

  • Leovy, C. B., 1973: ‘Exchange of water vapor between the atmosphere and surface of Mars.’ Icarus, 18, 120–125.

    Google Scholar 

  • Lindzen, R. S., and D. I. Will, 1973: ‘An analytic formula for heating due to ozone absorption.’ J. Atmos. Sci., 30, 513–515.

    Google Scholar 

  • London, J., 1957: ‘A study of the atmospheric heat balance.’ Final report, AFCRL Contract AF19(122)-165, Research Division, College of Engineering, New York University.

    Google Scholar 

  • Lorenz, E. N., 1967: ‘The nature and theory of the general circulation of the atmosphere.’ WMO Monograph No. 218, TP115.

    Google Scholar 

  • Luther, F. M., 1973: ‘Monthly mean values of eddy diffusion coefficients in the lower stratosphere. Lawrence Livermore Laboratory Report UCRL-50584 (NTIS No. UCRL-50594).

    Google Scholar 

  • Luther, F. M., 1976a: ‘A parameterization of solar absorption by nitrogen dioxide.’ J. Appl. Meteor., 15, 479–482.

    Google Scholar 

  • Luther, F. M., 1976b: ‘Relative influence of stratospheric aerosols on solar and longwave radiative fluxes for a tropical atmosphere.’ J. Appl. Meteor., 15, 951–955.

    Google Scholar 

  • Luther, F. M., and M. C. Maracken, 1974: ‘Initial validation studies for ZAM2 radiation and large-scale eddy transport mechanisms.’ In Proceedings of the Third Conference on the Climate Impact Assessment Program, eds. A. J. Broderick and T. M. Hard, U.S. Department of Transportation report DOT-TSC-OST-74–15, 437–449.

    Google Scholar 

  • MacCracken, M. C., 1968: ‘Ice age theory analysis by computer model simulation.’ Ph.D. thesis, University of California, Davis/Livermore.

    Google Scholar 

  • MacCracken, M. C., 1983: ‘Nuclear war: Preliminary estimates of the climatic effects of a nuclear exchange.’ In Proceedings of the International Seminar on Nuclear War 3rd Session: The Technical Basis for Peace, eds. W. S. Newman and S. Stipcich, “E. Majorana” Centre for Scientific Culture, Erice, August 19–24, 1983, 161–183.

    Google Scholar 

  • MacCracken, M. C., and R. D. Bornstein, 1977: ‘On the treatment of advection in flux formulations for variable grid models, with application to two models of the atmosphere.’ J. Comp. Phys., 23, 135–149.

    Google Scholar 

  • McCaracken, M. C., and F. M. Luther, 1974: ‘Climate studies using a zonal atmospheric model.’ In Proceedings of the International Conference on Structure, Composition and General Circulation of the Upper and Lower Atmospheres and Possible Anthropogenic Perturbations, Vol. II, eds. N. J. Derco and E. J. Truhlar, January 14–25, 1974, Melbourne, Australia, 1107–1128.

    Google Scholar 

  • McCaracken, M. C., and F. M. Luther, 1984: ‘Preliminary estimate of the radiative and climatic effects of the El Chichon eruption.’ Geof. Int., 23, 385–401.

    Google Scholar 

  • McCaracken, M. C., and G. L. Potter, 1975: ‘Comparative climatic impact of increased stratospheric aerosol loading and decreased solar constant in a zonal climate model.’ In Proceedings of the WMO/IAMAP Symposium on Long-Term Climatic Fluctuations, Norwich, England, 18–23 August 1975, World Meteorological Organization Report No. 421, Geneva, Switzerland, 415–420.

    Google Scholar 

  • McCaracken, M. C., J. S. Ellis, H. W. Ellsaesser, F. M. Luther and G. L. Potter, 1981: ‘The Livermore Statistical Dynamical Model.’ Lawrence Livermore National Laboratory Report UCID-19060.

    Google Scholar 

  • Maracken, M. C., R. D. Cess and G. L. Potter, 1986: The climatic effects of Arctic aerosols: An illustration of climate feedback mechanisms with one- and two-dimensional climate models, J. Geophys. Res., 91, 14445–14450.

    Google Scholar 

  • Manabe, S., and T. B. Terpstra, 1974: ‘The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments.’ J. Atmos. Sci., 31, 3–42.

    Google Scholar 

  • Maykut, G. A., and N. Untersteiner, 1971: ‘Some results from a time-dependent thermodynamic model of sea-ice.’ J. Geophys. Res., 76, 1550–1575.

    Google Scholar 

  • Mitchell, C. S., G. L. Potter, H. W. Ellsaesser and J. J. Walton, 1981: ‘Case study of feedbacks and synergisms in a doubled C02 experiment.’ J. Atmos. Sci., 38, 1906–1910.

    Google Scholar 

  • Mullan, A. B., 1979 ‘A mechanistic model for midlatitude mean temperature structure.’ Ph.D. thesis. Massachusetts Institute of Technology, 248 pp.

    Google Scholar 

  • North, G. R., and J. A. Coakley, Jr., 1979: ‘Differences between seasonal and mean annual energy balance model calculations of climate and climate sensitivity.’ J. Atmos. Sci., 36, 1189–1204.

    Google Scholar 

  • Oort, A. H., 1983: ‘Global Atmospheric Circulation Statistics.’ NOAA Professional Paper 14, 180 pp.

    Google Scholar 

  • Oort, A. H., and T. H. Vonder Haar, 1976: ‘On the observed annual cycle in the ocean-atmosphere heat balance over the Northern Hemisphere.’ J. Phys. Oceanography, 6, 781–800.

    Google Scholar 

  • Pfeffer, R. L., G. Buzyna and R. Kung, 1980: ‘Relationships among eddy fluxes of heat, eddy temperature variances and basic-state temperature parameters in thermally driven rotating fluids.’ J. Atmos. Sci., 37, 2577–2599.

    Google Scholar 

  • Porch, W. M., and M. C. McCaracken, 1982: ‘Parametric study of the effects of Arctic soot on solar radiation.’ Atmos. Environ., 16, 1365–1371.

    Google Scholar 

  • Potter, G. L., and R. D. Cess, 1984: ‘Background tropospheric aerosols: Incorporation within a statistical-dynamical climate model.’ J. Geophys. Res, 89, 9521–9526.

    Google Scholar 

  • Potter, G. L., and W. L. Gates, 1984: ‘A preliminary intercomparison of the seasonal response of two atmospheric climate models.’ Mon. Wea. Rev., 112, 909–917.

    Google Scholar 

  • Potter, G. L., H. W. Ellsaesser, M. C. McCaracken and F. M. Luther, 1976: ‘Possible climatic impact of tropical deforestation.’ Nature, 258, 617–698.

    Google Scholar 

  • Potter, G. L., H. W. Ellsaesser, M. C. Maracken and F. M. Luther, 1979a: ‘Performance of the Lawrence Livermore Laboratory zonal atmospheric model.’ In Report of the JOC Study Conference on Climate Models: Performance, Intercomparison and Sensitivity Studies, ed. W. L. Gates, GARP Publication No. 22, WMO, Geneva, 852–871.

    Google Scholar 

  • Potter, G. L., H. W. Ellsaesser, M. C. Maracken and F. M. Luther, 1979b: ‘Climate experiments: Albedo experiments with a zonal atmospheric model.’ In Report of the JOC Study Conference on Climate Models: Performance, Intercomparison and Sensitivity Studies, ed. W. L. Gates, GARP Publication No. 22, WMO, Geneva, 995–1001.

    Google Scholar 

  • Potter, G. L., H. W. Ellsaesser, M. C. Maracken and J. S. Ellis, 1981a: ‘Albedo change by man: Test of climatic effects.’ Nature, 291, 47–49.

    Google Scholar 

  • Potter, G. L., H. W. Ellsaesser, M. C. Maracken and C. S. Mitchell, 1981b: ‘Climate change and cloud feedback: The possible radiative effects of latitudinal redistribution.’ J. Atmos. Sci., 38, 489–493.

    Google Scholar 

  • Ramanathan, V., 1976: ‘Radiative transfer within the Earth’s troposphere and stratosphere: A simplified radiative-convective model.’ J. Atmos. Sci., 33, 1330–1346.

    Google Scholar 

  • Ramanathan, V., 1977: ‘Interactions between ice-albedo, lapse-rate and cloud-top feedbacks: An analysis of the nonlinear response of a GCM climate model.’ J. Atmos. Sci., 34, 1885–1897.

    Google Scholar 

  • Ramanathan, V., and R. E. Dickinson, 1981: ‘A scheme for forming nonprecipitating low-level clouds in GCMs.’ In Clouds in Climate: Modeling and Satellite Observational Studies, Report of Workshop held at NASA Goddard Institute for Space Studies, October 29–31, 1981, 85–87.

    Google Scholar 

  • Reed, R. J., and K. E. German, 1965: ‘A contribution to the problem of stratospheric diffusion by long-scale mixing.’ Mon. Wea. Rev. 93, 313–321.

    Google Scholar 

  • Robock, A., 1983: ‘Energy balance climate model calculations of the effects of the El Chichon eruption.’ In Proceedings of the Seventh Annual Climate Diagnostics Workshop. October 18–22, 1982, Boulder, CO, NOAA, Washington, D.C., 415–422.

    Google Scholar 

  • Rosen, R. D., and D. A. Salstein, 1982: ‘General circulation statistics on short time scales.’ Mon. Wea. Rev. 110, 683–698.

    Google Scholar 

  • Sadourny, R., and C. Basdevant, 1985: ‘Parameterization of subgrid scale barotropic and baroclinic eddies in quasi-geostrophic models: Anticipated potential vorticity method.’ J. Atmos. Sci., 42, 1353–1363.

    Google Scholar 

  • Saltzman, B., 1968: ‘Steady state solutions for axially-symmetric climatic variables.’ Pure Appl. Geophys., 69, 237–259.

    Google Scholar 

  • Saltzman, B., 1978: ‘A survey of statistical-dynamical models of the terrestrial climate.’ Advances in Geophysics, Vol. 20., 183–304.

    Google Scholar 

  • Saltzman, B., and A. D. Vernekar, 1968: ‘A parameterization of the large-scale eddy flux of relative angular momentum.’ Mon. Wea. Rev., 96, 854–857.

    Google Scholar 

  • Saltzman, B., and A. D. Vernekar, 1971: ‘An equilibrium solution for the axially symmetric component of the earth’s macroclimate.’ J. Geophys. Res., 76, 1498–1524.

    Google Scholar 

  • Sasamori, T., 1968: ‘The radiative cooling calculation for application to general circulation experiments.’ J. Appl. Meteor., 7, 721–729.

    Google Scholar 

  • Schneider, E. K., 1977: ‘Axially symmetric steady-state models of the basic state for instability and climate studies.’ J. Atmos. Sci., 34, 280–296.

    Google Scholar 

  • Schneider, E. K., 1981: ‘On the amplitudes reached by baroclinically unstable disturbances.’ J. Atmos. Sci., 38, 2142–2149.

    Google Scholar 

  • Schneider, S. H., and R. E. Dickinson, 1974: ‘Climate modeling.’ Rev. Geophys., 12, 447–493.

    Google Scholar 

  • Schoeberl, M. R., 1983: ‘A study of stratospheric vacillations and sudden warmings on a 3-plane. Part I: Single wave-mean flow interaction.’ J. Atmos. Sci., 40, 769–787.

    Google Scholar 

  • Schutz, C., and W. L. Gates, 1973: ‘Global climatic data for surface, 800 mb, 400 mb: April.’ The Rand Corporation, R-1317-ARPA.

    Google Scholar 

  • Sellers, W. D., 1965: Physical Climatology. The University of Chicago Press, Chicago, 272 pp.

    Google Scholar 

  • Simmons, A. J., and B. J. Hoskins, 1978: ‘The life cycles of some nonlinear baroclinic waves.’ J. Atmos. Sci., 35, 414–432.

    Google Scholar 

  • Starr, V. P., 1968: Physics of Negative Viscosity Phenomena. Mraw-Hill, New York, 254 pp.

    Google Scholar 

  • Stewart, H. J., 1945: ‘Kinematics and dynamics of fluid flow.’ Handbook of Meteorology, McGraw-Hill, 411–500.

    Google Scholar 

  • Stone, P. H., 1972: ‘A simplified radiative-dynamical model for the static stability of rotating atmospheres.’ J. Atmos. Sci., 29, 405–418.

    Google Scholar 

  • Stone, P. H., 1973: ‘Effects of large-scale eddies on climate change.’ J. Atmos. Sci., 30, 521–529.

    Google Scholar 

  • Stone, P. H., 1978: ‘Baroclinic adjustment.’ J. Atmos. Sci., 35, 561–571.

    Google Scholar 

  • Stone, P. H., 1984: ‘Feedbacks between dynamical heat fluxes and temperature gradients in the atmosphere.’ In Climate Processes and Climate Sensitivities, eds. J. E. Hansen and T. Takahashi, Geophysical Union Geophysical Monograph 29. Maurice Ewing Vol. 5, 6–12.

    Google Scholar 

  • Stone, P. H., and D. Miller, 1980: ‘Empirical relations between seasonal changes in meridional temperature gradients and meridional fluxes of heat.’ J. Atmos. Sci., 37, 1708–1721.

    Google Scholar 

  • Stone, P. H., S. J. Ghan, D. Spiegel and S. Rambaldi, 1982: ‘Short-term fluctuations in the eddy heat flux and baroclinic stability of the atmosphere.’ J. Atmos. Sci., 39, 1734–1746.

    Google Scholar 

  • Taylor, K. E., 1980: ‘The roles of mean meridional motions and large-scale eddies in zonally averaged circulations.’ J. Atmos. Sci., 37, 1–19.

    Google Scholar 

  • Tiedtke, M., 1988: ‘Parameterization of cumulus convection in large-scale models.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. I, M. E. Schlesinger, ed., Kluwer Academic Publishers, 375–431.

    Google Scholar 

  • Wallace, J. M., 1978: ‘Trajectory slopes, countergradient heat fluxes and mixing by lower stratospheric waves.’ J. Atmos. Sci., 35, 554–559.

    Google Scholar 

  • Walton, J. J., M. C. Maracken and H. W. Ellsaesser, 1983: ‘Preliminary Report on the LSDM Transport Sub-Model TRANZAM.’ Lawrence Livermore National Laboratory Report UCID-19029, Livermore, CA.

    Google Scholar 

  • White, A. A., 1977: ‘The surface flow in a statistical climate model - A test of a parameterization of large-scale momentum fluxes.’ Quart. J. Roy. Meteor. Soc., 103, 93–119.

    Google Scholar 

  • Wiin-Nielsen, A., and J. Sela, 1971: ‘On the transport of quasi-geostrophic potential vorticity.’ Mon. Wea. Rev., 99, 447–459.

    Google Scholar 

  • Yao, M.-S., and P. H. Stone, 1987: ‘Development of a two-dimensional zonally averaged statistical-dynamical model. Part I: The parameterization of moist convection and its role in the general circulation.’ J. Atmos. Sci., 44, 65–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

MacCracken, M.C., Ghan, S.J. (1988). Design and Use of Zonally-Averaged Climate Models. In: Schlesinger, M.E. (eds) Physically-Based Modelling and Simulation of Climate and Climatic Change. NATO ASI Series, vol 243. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3043-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3043-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7868-9

  • Online ISBN: 978-94-009-3043-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics