Skip to main content

Development of Climatic Scenarios: A. From General Circulation Models

  • Chapter
The Impact of Climatic Variations on Agriculture

Abstract

This section evaluates the advantages and disadvantages of a number of general circulation models (GCMs) in deriving climatic scenarios for subsequent assessments of climate impact in the IIASA/UNEP project’s case studies in Saskatchewan, Iceland, Finland, the northern USSR and Japan. It begins by outlining the nature of the problem and the information needs of decision makers. There then follows some comparison of the model-based and analogue approaches to scenario development. The main body of this section is concerned with the choice of GCM experiment that is most appropriate for the impact assessments which follow. The chosen scenario is then described in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bach, W. (1983). Carbon dioxide/climate threat: fate or forebearance? In W. Bach et al. (eds.), Carbon Dioxide: Current Views and Developments in Energy/Climate Research. Reidel, Dordrecht, pp. 461–509.

    Google Scholar 

  • Bach, W. (1984). Our Threatened Climate: Ways of Averting the CO2-Problem through Rational Energy Use. Reidel, Dordrecht.

    Google Scholar 

  • Bach, W. (1985). Forest dieback: extent of damages and control strategies. Experientia ,41, 1095–1104.

    Article  Google Scholar 

  • Bach, W. (1986). Global air pollution: modeling the combined greenhouse effect of CO2 and other trace gases. Proceedings of the 1th World Clean Air Congress & Exhibition. Sydney, pp. 330–340.

    Google Scholar 

  • Bach, W., Jung, H.J. and Knottenberg, H. (1985). Modeling the influence of carbon dioxide on the global and regional climate. Methodology and results. Münstersehe Geogr. Arbeiten ,H.21, Schöningh, Paderborn.

    Google Scholar 

  • Barron, E.J. and Washington, W.M. (1984). The role of geographic variables in explaining paleoclimates: results from cretaceous climate model sensitivity studies. J. Geophys. Res. ,9, 1267–1279.

    Article  Google Scholar 

  • Bryan, K., Kamro, F.G., Manabe, S. and Spelman, M.J. (1982). Transient climate response to increasing atmospheric carbon dioxide. Science ,215, 56–58.

    Article  Google Scholar 

  • CDAC (Carbon Dioxide Assessment Committee) (1982). Carbon Dioxide and Climate: A Second Assessment. National Research Council, National Academy Press, Washington, D.C.

    Google Scholar 

  • CDAC (1983). Changing Climate. National Research Council, National Academy Press, Washington, D.C.

    Google Scholar 

  • Chervin, R.M. (1981). On the comparison of observed and GCM simulated climate ensembles. J. Atmos. Sci. ,38, 885–901.

    Article  Google Scholar 

  • Crutcher, H. and Meserve, J. (1970). Selected Level Heights, Temperatures and Dew Points for the Northern Hemisphere. NAVAIR 50–1C-52, US Government Printing Office, Washington, D.C.

    Google Scholar 

  • Dickinson, R.E. (1986). How will climate change? The climate system and modelling of future climate. In B. Bolin, B.R. Döös, J. Jäger and R.A. Warrick (eds.), The Greenhouse Effect, Climatic Change and Ecosystems. Wiley, Chichester, pp. 206–270.

    Google Scholar 

  • Dickinson, R.E. and Chervin, R.M. (1980). Sensitivity of a general circulation model to changes in infrared cooling due to chlorofluoromethanes with and without prescribed zonal ocean surface temperature change. J. Atmos. Sci. ,36, 2304–2319.

    Article  Google Scholar 

  • Flohn, H. (1981). Major Climatic Events Associated with a Prolonged CO2-Induced Warming. ORAU/IEA-81–8 (M), Institute of Energy Analysis, Oak Ridge Associated Universities, Oak Ridge, USA.

    Google Scholar 

  • Gates, W.L. (1985). The use of general circulation models in the analysis of the ecosystem impacts of climatic change. Climatic Change ,7(3), 267–284.

    Article  Google Scholar 

  • Gates, W.L. and Potter, G.L. (1985). The response of a coupled atmospheric GCM and mixed layer ocean model to doubled CO2. Abstract for Third Conference on Climate Variations: Symposium on Contemporary Climate 1850–2100, Los Angeles, Jan. 5–11, p. 132.

    Google Scholar 

  • Gates, W.L., Cook, K.H. and Schlesinger, M.E. (1981). Preliminary analysis of experiments on the climatic effects of increased CO2 with an atmospheric general circulation model and a climatological ocean. J. Geophys. Res. ,86, 6385–6393.

    Article  Google Scholar 

  • Gates, W.L. Han, Y.J. and Schlesinger, M.E. (1984). The Global Climate Simulated by a Coupled Atmosphere-Ocean General Circulation Model: Preliminary Results. Climatic Research Institute, Report No. 57, Oregon State University, Corvallis.

    Google Scholar 

  • Gilchrist, A. (1983). Increased carbon dioxide concentrations and climate: the equilibrium response. In W. Bach et al. (eds.), Carbon Dioxide: Current Views and Developments in Energy/Climate Research. Reidel, Dordrecht, pp. 219–258.

    Google Scholar 

  • Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R. and Lerner, J. (1984). Climate sensitivity: analysis of feedback mechanisms. In J. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity. Geophysics Monograph 29, Maurice Ewing Vol. 5, American Geophysics Union, Washington, D.C., pp. 130–163.

    Chapter  Google Scholar 

  • Hansen, J., Russell, G., Lacis, A., Fung, I., Rind, D. and Stone, P. (1985). Climate response times: dependence on climate sensitivity and ocean mixing. Science ,229, 857–859.

    Article  Google Scholar 

  • Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R. and Travis, L. (1983). Efficient three dimensional global models for climate studies: models I and II. Mon. Wea. Rev. ,110, 609–662.

    Article  Google Scholar 

  • Hasselmann, K. (1979). On the signal-to-noise problem in atmospheric response studies. In Meteorology of Tropical Oceans. Royal Meteorological Society, pp. 251–259.

    Google Scholar 

  • Hayashi, Y. (1982). Confidence intervals of a climatic signal. J. Atmos. Sci. ,39, 1895–1905.

    Article  Google Scholar 

  • Jäger, J. and Kellogg, W.W. (1983). Anomalies in temperature and rainfall during warm arctic seasons. Climatic Change ,5(1), 39–60.

    Article  Google Scholar 

  • Jäger, L. (1976). Monatskarten des Niederschlags für die ganze Erde. Berichte des Deutschen Wetterdienstes ,18(139), 38 pp.

    Google Scholar 

  • Katz, R.W. (1982). Statistical evaluation of climate experiments with general circulation models: a parametric time series modeling approach. J. Atmos. Sct. ,39, 1446–1455.

    Article  Google Scholar 

  • Kim, J.-W., Chang, J.T., Baker, N.L., Wilks, D.S. and Gates, W.L. (1984). The statistical problem of climate inversion: determination of the relationship between local and large-scale climate. Mon. Wea. Rev. ,112, 2069–2077.

    Article  Google Scholar 

  • Kohlmaier, G.M., Plöchl, M., Keeling, C.D. and Revelle, R. (1985). Modeling efforts and experimental evidence of a CO2 stimulation effect on different types of vegetation. In Atmospheric Carbon Dioxide, its Sources, Sinks and Global Transport. Kanderstag Conference, 2–6 Sept. 1985, pp. 158–168.

    Google Scholar 

  • Kondratyev, K. Ya. and Prokokiev, M.A. (1984). Typifying atmospheric aerosol for assessments of its climatic impact. Phys. of the Atm. and Ocean ,5, 339–349.

    Google Scholar 

  • Kutzbach, J.E. and Otto-Bliesner, B.L. (1982). The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years BP in a low resolution general circulation model. J. Atmos. Sci. ,39, 1177–1188.

    Article  Google Scholar 

  • Livezey, R.E. and Chen, W.Y. (1983). Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 46–59.

    Article  Google Scholar 

  • Lough, J.M., Wigley, T.M.L. and Palutikof, J.P. (1983). Climate and climate impact scenarios for Europe in a warmer world. J. Clim. Appl. Meteor. ,22, 1673–1684.

    Article  Google Scholar 

  • Manabe, S. (1983). Carbon dioxide and climatic change. In B. Saltzman (ed.), Advances in the Theory of Climate. Advances in Geophysics, Vol. 25, Academic Press, New York, pp. 39–82.

    Google Scholar 

  • Manabe, S. and Stouffer, R.J. (1980). Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res. ,85 (C 10), 5529–5554.

    Article  Google Scholar 

  • Manabe, S. and Wetherald, R.T. (1975). The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci. ,32, 3–15.

    Article  Google Scholar 

  • Manabe, S. and Wetherald, R.T. (1980). On the distribution of climatic change resulting from an increase in CO2 content of the atmosphere. J. Atmos. Sci. ,37, 99–118.

    Article  Google Scholar 

  • Manabe, S., Bryan, K. and Spelman, M.J. (1979). A global ocean-atmosphere climate model with seasonal variation for future studies of climate sensitivity. Dyn. Atmos. Oceans ,3, 393–426.

    Article  Google Scholar 

  • Manabe, S., Wetherald, R.T. and Stouffer, R.J. (1981). Summer dryness due to an increase of atmospheric CO2 concentration. Climatic Change ,3, 347–386.

    Google Scholar 

  • Meinl, H., Bach, W., Jäger, J., Jung, H.-J., Knottenberg, H., Marr, G., Santer, B. and Schwieren, G. (1984). Socioeconomic impacts of climatic changes due to a doubling of atmospheric CO2 content. Research Report to CEC/DFLR. Dornier-System, Friedrichshafen.

    Google Scholar 

  • Mitchell, J.F.B. (1983). The seasonal response of a general circulation model to changes in CO2 and sea temperatures. Quart. J. Roy. Meteor. Soc. ,109, 113–152.

    Google Scholar 

  • Mitchell, J.F.B. and Lupton, G. (1984). A 4 × CO2 integration with prescribed changes in sea surface temperatures. Progr. in Biomet. ,3, 353–374.

    Google Scholar 

  • Palutikof, J.P., Wigley, T.M.L. and Lough, J.M. (1984). Seasonal climate scenarios for Europe and North America in a high CO2, warmer world. TRO 012. US Department of Energy, Washington, D.C.

    Google Scholar 

  • Pittock, A.B. (1983). Recent climatic change in Australia: implications for a CO2-warmed earth. Climatic Change ,5(4), 321–340.

    Google Scholar 

  • Pittock, A.B. and Salinger, M.J. (1982). Towards regional scenarios for a CO2-warmed earth. Climatic Change ,4(1), 23–40.

    Google Scholar 

  • Pollard, D. (1982). The performance of an upper ocean model coupled to an atmospheric GCM: preliminary results. Report No. 31 ,Climatic Research Institute, Oregon State University, Corvallis.

    Google Scholar 

  • Ramanathan, V., Cicerone, R.J., Singh, H.B. and Kiehl, J.T. (1985). Trace gas trends and their role in climatic change. J. Geophys. Res. ,90 (D3), 5547–5566.

    Article  Google Scholar 

  • Rind, D. (1984). The influence of vegetation on the hydrologic cycle in a global climate model. In J.E. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity. Geophysics Monographs 29. Maurice Ewing Vol. 5, American Geophysics Union, Washington, D.C., pp. 73–91.

    Chapter  Google Scholar 

  • Rind, D. and Lebedeff, S. (1984). Potential Climatic Impacts of Increasing Atmospheric CO2 with Emphasis on Water Availability and Hydrology in the United States. Report prepared for the US Environmental Protection Agency, Washington, D.C., 96 pp.

    Google Scholar 

  • Schlesinger, M.E. (1983). Simulating CO2-Induced Climatic Change with Mathematical Models: Capabilities, Limitations and Prospects. III.3-III.139, US DOE 021, Washington, D.C.

    Google Scholar 

  • Schlesinger, M.E., Han, Y.J. and Gates, W.L. (1985). The role of the ocean in CO2-induced climatic change: a study with the OSU coupled atmosphere-ocean general circulation model. Climatic Research Institute Report No. 60 ,OSU, Corvallis.

    Google Scholar 

  • Schneider, S.H. (1984). On the empirical variation of model-predicted CO2-induced climatic effects. In J.E. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity. Geophysics Monographs 29, Maurice Ewing Vol. 5, American Geophysics Union, Washington, D.C., pp. 187–201.

    Chapter  Google Scholar 

  • Schneider, S.H. and Thompson, S.L. (1981). Atmospheric CO2 and climate: importance of the transient response. J. Geophys. Res. ,86(64), 3135–3147.

    Article  Google Scholar 

  • Schutz, C. and Gates, W.L. (1971). Global Climatic Data for Surface. 800 mb, 400 mb: January. R-915-ARPA. The Rand Corporation, Santa Monica, CA, 173 pp.

    Google Scholar 

  • Schutz, C. and Gates, W.L. (1972a). Supplemental Global Climatic Data: January. R-915 1-ARPA. The Rand Corporation, Santa Monica, CA, 41 pp.

    Google Scholar 

  • Schutz, C. and Gates, W.L. (1972b). Global Climatic Data for Surface, 800 mb, 400 mb: July. R-1029-ARPA. The Rand Corporation, Santa Monica, CA, 180 pp.

    Google Scholar 

  • Schutz, C. and Gates, W.L. (1973a). Global Climatic Data for Surface, 800 mb, 400 mb: April. R-1817-ARPA. The Rand Corporation, Santa Monica, CA, 192 pp.

    Google Scholar 

  • Schutz, C. and Gates, W.L. (1973b). Supplemental Global Climatic Data: January. R-915/2-ARPA. The Rand Corporation, Santa Monica, CA, 38 pp.

    Google Scholar 

  • Schutz, C. and Gates, W.L. (1974a). Global Climatic Data for Surface, 800 mb, 400 mb: October. R-1425-ARPA. The Rand Corporation, Santa Monica, CA, 192 pp.

    Google Scholar 

  • Schutz, C. and Gates, W.L. (1974b). Supplemental Global Climatic Data: July. R-1029/1-ARPA. The Rand Corporation, Santa Monica, CA, 38 pp.

    Google Scholar 

  • Sinclair, L. (1985). International task force plans to reverse tropical deforestation. Ambio ,14(6), 352–353.

    Google Scholar 

  • Spelman, M.J. and Manabe, S. (1984). Influence of oceanic heat transport upon the sensitivity of a model climate. J. Geophys. Res. ,89, 571–586.

    Article  Google Scholar 

  • Storch, H.V. (1982). A remark on Chervin-Schneider’s algorithm to test significance of climate experiments with GCMs, J. Atmos. Sci. ,39, 187–189.

    Article  Google Scholar 

  • Thompson, S.L. and Schneider, S.H. (1982a). Carbon dioxide and climate: has a signal been observed yet? Nature ,295, 645–646.

    Article  Google Scholar 

  • Thompson, S.L. and Schneider, S.H. (1982b). Carbon dioxide and climate: the importance of realistic geography in estimating transient temperature response. Science ,217, 1031–1033.

    Article  Google Scholar 

  • Washington, W.M. and Meehl, G.A. (1983). General circulation model experiments on the climatic effects due to a doubling and quadrupling of carbon dioxide concentration. J. Geophys. Res. ,88(C 11), 6600–6610.

    Article  Google Scholar 

  • Washington, W.M. and Meehl, G.A. (1984). Seasonal cycle experiments on the climate sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed layer ocean model. J. Geophys. Res , 89, 9475–9503.

    Article  Google Scholar 

  • Wigley, T.M.L. and Schlesinger, M.E. (1985). Analytical solution for the effect of increasing CO2 on global mean temperature. Nature ,315, 649–652.

    Article  Google Scholar 

  • Wilson, C.A. and Mitchell, J.F.B. (1984). The 5-Layer Model Climate over Western Europe and the Frequency of Occurrence of Extreme Values of Temperature, Precipitation and Wind for Selected Grid Boxes: The Changes with 4 × CO2 and Prescribed Sea Surface Temperatures. MET O 20 Tech. Note II/224. Bracknell.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 International Institute for Applied Systems Analysis and United Nations Environment Program

About this chapter

Cite this chapter

Bach, W. (1988). Development of Climatic Scenarios: A. From General Circulation Models. In: Parry, M.L., Carter, T.R., Konijn, N.T. (eds) The Impact of Climatic Variations on Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2943-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2943-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2701-5

  • Online ISBN: 978-94-009-2943-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics