Advertisement

Flow in Capillaries, Slits and Dies

  • John M. Dealy
  • Kurt F. Wissbrun

Abstract

Pressure driven flow through tubes, slits and other types of channels is of central importance in experimental rheology and in polymer processing. Not only is this flow used as the basis for the most popular type of melt rheometer, but it is also a flow that occurs often in melt processing, for example in an extrusion die or in the runner feeding an injection mold. We will derive the basic equations for flow in tubes and slits and show how these can be used to interpret rheometer data and to design flow systems. The irregular flows that can occur at the entrance and exit of a die are described, and methods for estimating the pressure drop in dies are reviewed.

Keywords

Shear Rate Wall Shear Stress Wall Slip Normal Stress Difference Extensional Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Walters, Rheometry, Chapman and Hall, London, 1975.Google Scholar
  2. 2.
    R. W. Whorlow, Rheological Techniques, Ellis Norwood, distributed by John Wiley & Sons, New York, 1979.Google Scholar
  3. 3.
    P. Schlimmer and R. H. Worthoff, Chem. Eng. Sci. 33: 759 (1978).Google Scholar
  4. 4.
    H. Chmiel and P. Schlimmer, Chemie-Ing.-Techn. 43: 1257 (1971).Google Scholar
  5. 5.
    A. V. Ramamurthy, J. Rheol. 30: 337 (1986).ADSGoogle Scholar
  6. 6.
    D. S. Kalika and M. M. Denn, J. Rheol. 31: 815 (1987).ADSGoogle Scholar
  7. 7.
    H. M. Laun, Rheol. Acta 22: 171 (1983).Google Scholar
  8. 8.
    A. S. Lodge, “Normal stress differences from hole pressure measurements,” Chapter 11 of Rheological Measurement, edited by A. A. Collyer and D. W. Clegg, Elsevier Applied Science, London & NY, 1988.Google Scholar
  9. 9.
    R. I. Tanner and A. C. Pipkin, Trans. Soc. Rheol. 13: 471 (1979).Google Scholar
  10. 10.
    K. Higashitani and W. G. Pritchard, Trans. Soc. Rheol. 16: 687 (1972).Google Scholar
  11. 11.
    R. D. Pike and D. G. Baird, J. Non-Newt. Fl. Mech. 16: 211 (1984).Google Scholar
  12. 12.
    D. G. Baird, M. D. Read and R. D. Pike, Polym. Eng. Sci. 26: 225 (1986).Google Scholar
  13. 13.
    D. G. Baird, Trans. Soc. Rheol. 19: 147 (1975).Google Scholar
  14. 14.
    D. G. Baird, J. Polym. Sci. 20: 3155 (1976).Google Scholar
  15. 15.
    F. Sugeng, N. Phan-Thien and R. I. Tanner, J. Rheol. 32: 215 (1988).ADSGoogle Scholar
  16. 16.
    D. G. Baird, M. D. Read and J. N. Reddy, J. Rheol. 32: 621 (1988).ADSzbMATHGoogle Scholar
  17. 17.
    A. S. Lodge and L. de Vargas, Rheol. Acta 22: 151 (1983).Google Scholar
  18. 18.
    R. Srinivasan and B. A. Finlayson, J. Non-Newt. Fl. Mech. 27: 1 (1988).Google Scholar
  19. 19.
    C. D. Han, Trans. Soc. Rheol. 22: 171 (1983).Google Scholar
  20. 20.
    J. M. Davis, J. F. Hutton and K. Walters, J. Phys. (D) 6: 2259 (1973).ADSGoogle Scholar
  21. 21.
    C. D. Han, Trans. Soc. Rheol. 18: 163 (1974).Google Scholar
  22. 22.
    M. Gottlieb and R. B. Bird, Ind. Eng. Chem. Fund. 18: 357 (1979).Google Scholar
  23. 23.
    C. D. Han and L. H. Drexler, Trans. Soc. Rheol. 17: 659 (1973).Google Scholar
  24. 24.
    K. R. Reddy and R. I. Tanner, J. Rheol. 22: 66 (1978).Google Scholar
  25. 25.
    N. Y. Tuna and B. A. Finlayson, J. Rheol. 28: 79 (1984).ADSGoogle Scholar
  26. 26.
    J. Vlachopoulos and E. Mitsoulis, J. Polym. Eng. 5: 173 (1985).Google Scholar
  27. 27.
    D. V. Boger and M. M. Denn, J. Non-Newt. FI. Mech. 6: 163 (1980).Google Scholar
  28. 28.
    C. D. Han, “Slit Rheometry,” Chapter 2 of Rheological Measurement, edited by A. A. Collyer and D. W. Clegg, Elsevier Applied Science, London & NY, 1988.Google Scholar
  29. 29.
    C. Rauwendaal and F. Fernandez, Polym. Eng. Sci. 25: 765 (1985).Google Scholar
  30. 30.
    N. Y. Tuna and B. A. Finlayson, J. Rheol. 32: 285 (1988).ADSGoogle Scholar
  31. 31.
    W. Kozicki, C. H. Chou and C. Tiu, Chem. Eng. Sci. 21: 665 (1966).Google Scholar
  32. 32.
    C. Miller, Ind. Eng. Chem. Fundam. 11: 524 (1972).Google Scholar
  33. 33.
    T.-J. Liu and C.-N. Hong, Polym. Eng. Sci. 28: 1559 (1988).Google Scholar
  34. 34.
    J. L. White and A. Kondo, J. Non-Newt. Fl. Mech. 3: 41 (1977).Google Scholar
  35. 35.
    J. M. Piau, N. El Kissi and B. Tremblay, J. Non-Newt. Fl. Mech. 30: 197 (1988).Google Scholar
  36. 36.
    J. M. Piau, N. El Kissi and B. Tremblay, “Influence of upstream instabilities and wall slip on melt fracture and sharkskin phenomena during silicone extrusion through orifice dies,” to be published, 1990.Google Scholar
  37. 37.
    S. A. White and D. G. Baird, J. Non-Newt. FI. Mech. 29: 245 (1988).Google Scholar
  38. 38.
    S. A. White, A. D. Gotsis and D. G. Baird, J. Non-Newt. FI. Mech. 24: 121 (1987).Google Scholar
  39. 39.
    C. D. Han and L. H. Drexler, J. Appl. Polym. Sci. 17: 2369 (1973).Google Scholar
  40. 40.
    S. T. E. Aldhouse, M. R. Mackley and I. P. T. Moore, J. Non-Newt. Fl. Mech. 21: 359 (1986).Google Scholar
  41. 41.
    M. R. Mackley and I. P. T. Moore, J. Non-Newt. Fl. Mech. 21: 337 (1986).Google Scholar
  42. 42.
    C. D. Han, Rheology in Polymer Processing, Academic Press, New York, 1976.Google Scholar
  43. 43.
    E. B. Bagley, J. Appl. Phys. 28: 624 (1957).ADSGoogle Scholar
  44. 44.
    H. L. Weissberg, Phys. Fl. 5: 1033 (1962).MathSciNetADSzbMATHGoogle Scholar
  45. 45.
    F. N. Cogswell, Polymer Melt Rheology, John Wiley & Sons, New York, 1981.Google Scholar
  46. 46.
    H. M. Laun and H. Schuch, J. Rheol. 33: 119 (1989).ADSGoogle Scholar
  47. 47.
    W. Philippoff and F. H. Gaskins, Trans. Soc. Rheol. 2: 263 (1958).Google Scholar
  48. 48.
    F. N. Cogswell, Trans. Soc. Rheol 16: 383 (1972).Google Scholar
  49. 49.
    F. N. Cogswell, Polym. Eng. Sci. 12: 64 (1972).Google Scholar
  50. 50.
    D. M. Binding, J. Non-Newt. Fl. Mech. 27: 173 (1988).zbMATHGoogle Scholar
  51. 51.
    R. Ramanathan, D. G. Baird and L. G. Krauskoff, SPE Tech. Papers 3: 773 (1989).Google Scholar
  52. 52.
    J. M. Dealy, Rheometers for Molten Plastics, Van Nostrand Reinhold, New York, 1982.Google Scholar
  53. 53.
    R. C. Penwell, R. S. Porter and S. Middleman, J. Polym Sci. A-2 9: 731 (1971).Google Scholar
  54. 54.
    G. H. France, Chapter 7 of Rheological Measurement, edited by A. A. Collyer and D. W. Clegg, Elsevier Applied Science, London and New York, 1988.Google Scholar
  55. 55.
    A. V. Shenoy, S. Chattopadhyay, and V. M. Nadkarni, Rheol. Acta 22: 90 (1983).Google Scholar
  56. 56.
    D. R. Saini and A. V. Shenoy, Eur. Polym J. 19: 811 (1983).Google Scholar
  57. 57.
    A. V. Shenoy, D. R. Saini and V. M. Nadkarni, Rheol. Acta 22: 209 (1983).Google Scholar
  58. 58.
    D. R. Saini and A. V. Shenoy, J. Elastomers Plastics 17: 189 (1985).Google Scholar
  59. 59.
    J. P. Villemaire and J. F. Agassant, Polym. Proc. Eng. 1:223 (1983–4).Google Scholar
  60. 60.
    J. R. A. Pearson, Mechanics of Polymer Processing, Elsevier Applied Science Publishers, New York, 1985.Google Scholar
  61. 61.
    A. G. Gibson, Chapter 3 of Rheological Measurement, edited by A. A. Collyer and D. W. Clegg, Elsevier Applied Science, London and New York, 1988.Google Scholar
  62. 62.
    R. L. Boles, H. L. Davis and D. C. Bogue, Polym. Eng. Sci. 10: 24 (1970).Google Scholar
  63. 63.
    T. H. Kwon, S. F. Shen and K. K. Wang, Polym. Eng. Sci. 26: 214 (1986).Google Scholar
  64. 64.
    W. Michaeli, Extrusion Dies, Hanser, Munich and New York, 1984.Google Scholar
  65. 65.
    Z. Tadmor and C. G. Gogos, Principles of Polymer Processing, John Wiley & Sons, New York, 1979 (Chapter 13).Google Scholar
  66. 66.
    T.-J. Liu, C.-N. Hong and K.-C. Chen, Polym. Eng. Sci. 28: 1517 (1988).Google Scholar
  67. 67.
    J. Gavins and M. Modan, Phys. Fl. 10: 487 (1967).ADSGoogle Scholar
  68. 68.
    R. I. Tanner, Appl. Polym. Symp. 20: 201 (1973).Google Scholar
  69. 69.
    K. Reddy and R. I. Tanner, J. Rheol. 22: 661 (1978).ADSGoogle Scholar
  70. 70.
    V. I. Brizitsky, G. V. Vinogradov, A. I. Isayev and Y. Y. Podolsky, J. Appl. Polym. Sci. 27: 751 (1978).Google Scholar
  71. 71.
    C. D. Han, M. Charles and W. Philippoff, Trans. Soc. Rheol. 14: 393 (1970).Google Scholar
  72. 72.
    W. W. Graessley, S. D. Glasscock and R. L. Crawley, Trans. Soc. Rheol. 14: 19 (1970).Google Scholar
  73. 73.
    J. L. White and J. F. Roman, J. Appl. Polym. Sci. 20: 1005 (1976).Google Scholar
  74. 74.
    L. A. Utracki, Z. Bakerdjian and M. R. Kamal, J. Appl. Polym. Sci. 19: 481 (1975).Google Scholar
  75. 75.
    S. J. Kurtz, T. A. De Rossett and M. T. Shaw, U.S. Patent 4,449, 395, (1984).Google Scholar
  76. 76.
    A. Garcia-Rejon and J. M. Dealy, Polym. Eng. Sci. 22: 158 (1982).Google Scholar
  77. 77.
    N. Orbey and J. M. Dealy, Polym. Eng. Sci. 24: 511 (1984).Google Scholar
  78. 78.
    R. I. Tanner, “Recoverable Elastic Strain and Swelling Ratio,” Chapter 4 of Rheological Measurement, edited by A. A. Collyer and D. W. Clegg, Elsevier Applied Science, London and New York, 1988.Google Scholar
  79. 79.
    M. J. Crochet, A. R. Davies and K. Walters, Numerical Simulation of Non-Newtonian Flow, Elsevier, Amsterdam 1984.zbMATHGoogle Scholar
  80. 80.
    R. I. Tanner, J. Rheol. 32: 673 (1988).ADSGoogle Scholar
  81. 81.
    A. M. Henderson and A. Rudin, J. Appl. Polym. Sci. 31: 353 (1986).Google Scholar
  82. 82.
    B. Yang and L. J. Lee, Polym. Eng. Sci. 27: 1079 (1987).Google Scholar
  83. 83.
    J. L. White and D. Huang, Polym. Eng. Sci. 21: 1101 (1981).Google Scholar
  84. 84.
    D. C. Huang and J. L. White, Polym. Eng. Sci. 19: 609 (1979).Google Scholar
  85. 85.
    J. F. Stevenson, L. J. Lee and R. M. Griffith, Polym. Eng. Sci. 26: 233 (1986).Google Scholar
  86. 86.
    M. G. Rogers, J. Appl. Polym. Sci. 14: 1679 (1970).Google Scholar
  87. 87.
    R. A. Mendelson and F. L. Finger, J. Appl. Polym. Sci. 19: 1061 (1975).Google Scholar
  88. 88.
    R. J. Koopmans, J. Polym. Sci. A 26: 1157 (1988).Google Scholar
  89. 89.
    T. F. Ballenger, I.-Jen Chen, J. W. Crowder, G. E. Hagler, D. C. Bogue and J. L. White, Trans. Soc. Rheol. 15: 195 (1971).Google Scholar
  90. 90.
    Y. Oyanagi, Appl. Polym. Symp. 20: 123 (1973).Google Scholar
  91. 91.
    J. L. White, Appl. Polym. Symp. 20: 155 (1973).Google Scholar
  92. 92.
    C. J. S. Petrie and M. M. Denn, A. I. Ch.E. J. 22: 209 (1976).Google Scholar
  93. 93.
    N. Bergem, Proc. VIIIth Int. Congr. Rheol., Gothenberg, 1976, p. 50.Google Scholar
  94. 94.
    N. F. Cogswell, Polymer Melt Rheology, John Wiley & Sons, New York, 1981, p. 101.Google Scholar
  95. 95.
    G. V. Vinogradov, N. I. Insarova, B. B. Boiko and E. K. Borisenkova, Polym. Eng. Sci. 12: 323 (1972).Google Scholar
  96. 96.
    G. V. Vinogradov, Polymer 18: 1275 (1977).Google Scholar
  97. 97.
    J. M. Lupton and R. W. Regester, Polym. Eng. Sci. 5: 235 (1965).Google Scholar
  98. 98.
    R. S. Spencer and R. E. Dillon, J. Colloid Sci. 4: 241 (1949).Google Scholar
  99. 99.
    M. Fujiyama and H. Awaya, J. Appl. Polym. Sci. 16: 275 (1972).Google Scholar
  100. 100.
    A. V. Ramamurthy, U.S. Patent 4,552, 712 (1985).Google Scholar
  101. 101.
    A. V. Ramamurthy, U.S. Patent 4, 554, 120 (1985).Google Scholar
  102. 102.
    A. V. Ramamurthy, U.S. Patent 4,522, 776 (1985).Google Scholar
  103. 103.
    H. Yamane and J. L. White, J. Rheol. Japan 15: 131 (1987).Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • John M. Dealy
    • 1
  • Kurt F. Wissbrun
    • 2
  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada
  2. 2.Hoechst Celanese Research DivisionSummitUSA

Personalised recommendations