Skip to main content

Product recovery and purification via precipitation and crystallization

  • Chapter
Handbook of Downstream Processing
  • 1569 Accesses

Abstract

Precipitation of biomolecules such as antibiotics or proteins is a means of concentrating and, in some cases, purifying a desired product. Precipitation of a molecule results in an amorphous solid that is of low purity relative to a product obtained by crystallization. Precipitation is best utilized as a means of product isolation; whereas, crystallization may be an effective polishing step that provides a product of high purity. As in any unit operation, the design engineer must be concerned with equilibrium behavior, kinetic behavior and appropriate equipment selection. In all of these respects, both crystallization and precipitation are more similar than different. However, some differences exist and will be highlighted during the subsequent discussion. Although many of the examples presented in this chapter will focus on the application to protein molecules, the principles applied may be generalized to any system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prausnitz, J.M. (1986). Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice-Hall, Englewood Cliffs, New Jersey, p.415.

    Google Scholar 

  2. Wankat, P.C. (1990). Rate-Controlled Separations. Elsevier Applied Science, New York, New York, p.21.

    Google Scholar 

  3. Edsall, J.T. (1952). Adv. Protein Chem., 3, 383.

    Article  Google Scholar 

  4. Cole, J.B., Bryan, M.L. and Bryan, W.P. (1969). Arch. Biochem. Biophys., 130, 86.

    Article  CAS  Google Scholar 

  5. Gronwall, A. (1942). Compt. Redn. Trav. Lab. Carlsberg, 24, 8.

    Google Scholar 

  6. Hofmeister, T. (1887). Arch. Exptl Pathol. Pharmakol. Naunyn-Schiedeberg’s, 24, 274.

    Google Scholar 

  7. Setschenow, J. (1889). Z. Physik. Chem., 4, 117.

    Google Scholar 

  8. Cohn, E.J. (1925). Physiol. Rev., 5, 349.

    CAS  Google Scholar 

  9. Green, A.A. (1932). J. Biol. Chem., 95, 47.

    Google Scholar 

  10. Sorenson, S.P.L. (1933). Biochem. Z., 258, 16.

    Google Scholar 

  11. Green, A.A. (1931). J. Biol. Chem., 93, 495.

    CAS  Google Scholar 

  12. Czok, R. and Bucher, Th. (1961). Advances in Protein Chemistry, 15, 315.

    Article  Google Scholar 

  13. Scopes, R.K. (1982). Protein Purfication. Springer-Verlag, New York.

    Google Scholar 

  14. Schubert, P.F. and Finn, R.K. (1981) Biotechnol. Bioeng., 23, 2569.

    Article  CAS  Google Scholar 

  15. Hoare, M., Bell, D.J. and Dunnill, P. (1983). Adv. Biochem. Eng. Biotechnol, 26, 1.

    Google Scholar 

  16. Larson, M.A. and Garside, J. (1986). J. Crystal Growth, 76, 88.

    Article  CAS  Google Scholar 

  17. Rush, I.T. and Larson, M.A. (1987). Industrial Crystallization, Vol. 87, (Eds, J. Nyvlt and S. Zacek), Elsevier, Amsterdam, p.111.

    Google Scholar 

  18. Nyvlt, J., Sohnel, O., Matuchova, M. and Broul, M. (1985). The Kinetics of Industrial Crystallization. Elsevier, Amsterdam, p. 154.

    Google Scholar 

  19. Ohara, M. and Reid, R.C. (1973). Modeling Crystal Growth Rates from Solution. Prentice-Hall, Englewood Cliffs, New Jersey, p.43.

    Google Scholar 

  20. Burton, W.K., Cabrera, N. and Frank, F.C. (1951). Trans. Royal Soc. (London), A243, 299.

    Article  CAS  Google Scholar 

  21. Randolph, A.D. and Larson, M.A. (1988). Theory of Particulate Processes. Academic Press, San Diego, California.

    Google Scholar 

  22. Jones, A.G. (1974). Chem. Eng. Sci. 29, 1075.

    Article  CAS  Google Scholar 

  23. Jones, A.G. and Mullin J.W. (1974). Chem. Eng. Sci., 29, 105.

    Article  CAS  Google Scholar 

  24. Mullin, J.W. and Nyvlt, J. (1971). Chem. Eng. Sci., 26, 369.

    Article  CAS  Google Scholar 

  25. Grabenbauer, G.C. and Glatz, CE. (1981). Chem. Eng. Commun., 13, 203.

    Article  Google Scholar 

  26. Glatz, C.E., Hoare, M. and Landa-Vertiz, J. (1986). AIChE J, 32, 1196.

    Article  CAS  Google Scholar 

  27. Brown, D.L. and Glatz, C.E. (1987). Chem. Eng. Sci., 42, 1831.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Schall, C.A., Wiencek, J.M. (1997). Product recovery and purification via precipitation and crystallization. In: Goldberg, E. (eds) Handbook of Downstream Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1563-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1563-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7198-7

  • Online ISBN: 978-94-009-1563-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics