Skip to main content

Mechanical disruption of cells

  • Chapter
Handbook of Downstream Processing
  • 1597 Accesses

Abstract

The disruption of microorganisms is often required in the large-scale production of microbial products, such as enzymes, toxins, and diagnostic or therapeutic proteins. Many alternatives for release of product from cells exist for the process engineer: for example, mechanical disruption, autolysis, and chemical or enzymatic lysis. Genetic advances have also led to microbial host-vector systems, which secrete products from the cell, thus lowering contamination and lessening the risk of proteolysis. However, for many products of interest, these systems are either not available or not applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lilly, M.D. and Dunnill, P. (1969). Isolation of intracellular enzymes from microorganisms — the development of a continuous process, in Fermentation Advances (Ed. D. Perlman), Academic Press, London, pp. 225–248.

    Google Scholar 

  2. Edebo, L. (1969). Disintegration of cells, in Fermentation Advances (Ed. D Perlman), Academic Press, London, pp. 249–272.

    Google Scholar 

  3. Foster, D. (1992). Cell disruption: breaking up is hard to do. Biotechnol.., 10, 1539.

    Article  CAS  Google Scholar 

  4. Brookman, J.S.G. (1974). Mechanism of cell disintegration in a high pressure homogenizer. Biotechnol. Bioeng., 16, 371.

    Article  Google Scholar 

  5. Engler, C.R. and Robinson, C.W. (1981). Disruption of Candida utilis in high pressure flow devices. Biotechnol. Bioeng., 23, 765.

    Article  Google Scholar 

  6. Hetherington, P.J., Follows, M. and Dunnill, P. (1971). Release of protein from Baker’s yeast (Saccharomyces cerevisiae) by disruption in an industrial homogenizer. Trans. Inst. Chem. Engr., 49, 142.

    CAS  Google Scholar 

  7. Madsen, F.S. and Ibsen, C.I. (1987). Cell Disruption by Means of High Pressure. APV-Rannie.

    Google Scholar 

  8. Whitworth, D.A. (1974). Assessment of an industrial homogenizer for protein and enzyme solubilization from spent brewery yeast. Compt. Rend. Trav. Lab. Carlsberg., 40(2): 19.

    CAS  Google Scholar 

  9. Dunnill, P. and Lilly, M.D. (1975). Protein extraction and recovery from microbial cells, in Single Cell Protein II. (Eds Tannenbaum and Wang), MIT Press, p. 179.

    Google Scholar 

  10. Schutte, H., Kroner, K.H. and Kula, M.-R. (1984). Recent studies of mechanical disintegrators for the large scale disruption of microorganism, in Third European Conference on Biotechnology, Verlag Chemie, p. 1–621.

    Google Scholar 

  11. Follows, M., Hetherington, P.J., Dunnill, P. and Lilly, M.D. (1971). Release of enzymes from Baker’s yeast by disruption in an industrial homogenizer. Biotechnol. Bioeng. 13, 549.

    Article  CAS  Google Scholar 

  12. Schutte, H and Kula, M.-R. (1986). Application of stirred ball mills and high pressure homogenizers for microorganism disintegration in technical scale. BTF Biotech-Forum Nr. 23. argang.

    Google Scholar 

  13. Patton, T.C. (1970). J. Paint Technol., 42, 626.

    Google Scholar 

  14. Marffy, F. and Kula, M.-R. (1974). Enzyme yields from cells of brewer’s yeast disrupted by treatment in a horizontal disintegrator. Biotechnol. Bioeng., 16, 623.

    Article  CAS  Google Scholar 

  15. Currie, J.A., Dunnill, P. and Lilly, M.D. (1972). Release of protein from baker’s yeast (Saccharomyces cerevisiae) by disruption in an industrial agitator mill. Biotechnol. Bioeng., 16, 725.

    Article  Google Scholar 

  16. Schutte, H., Kroner, K.H., Hustedt, H. and Kula, M.-R. (1983). Experiences with a 20 liter industrial bead mill for the disruption of microorganisms. Enzyme Microb. Technol., 5, 143.

    Article  Google Scholar 

  17. Rehacek, J. and Schaefer, J. (1977). Disintegration of microorganisms in an industrial horizontal mill of novel design. Biotechnol. Bioeng., 19, 1523.

    Article  Google Scholar 

  18. Schutte, H. and Kula, M.-R. (1990). In Separation Processes in Biotechnology. (Ed. J.A. Asenjo), Marcel Dekker, New York, p. 107.

    Google Scholar 

  19. Schutte, H. and Kula, M.-R. (1990). Pilot- and process-scale techniques for cell disruption. Biotechnol. Appl. Biochem., 12, 599.

    CAS  Google Scholar 

  20. Engler, C.R. and Robinson, C.W. (1979). New method of measuring cell-wall rupture. Biotechnol. Bioeng., 21, 1861.

    Article  CAS  Google Scholar 

  21. Cunningham, S.D. et al. (1975). Rupture and protein extraction of petroleum-grown yeast. J. Food Sci., 40, 732.

    Article  Google Scholar 

  22. Doulah, M.S. and Hammond T.H. (1975). A hydrodynamic mechanism for the disintegration of Saccharomyces cerevisiae in an industrial homogenizer. Biotechnol. Bioeng., 17, 845.

    Article  Google Scholar 

  23. Anon. (1987). Cell Disruption by a Rannie Lab 12.51 Hyper High Pressure Homogenizer. Obtained from APV-Rannie.

    Google Scholar 

  24. Rahacek, J., Beran, K. and Bicik, V. (1969). Disintegration of microorganisms and preparation of yeast cell walls in a new type of disintegrator. Appl. Microbiol., 17, 462.

    Google Scholar 

  25. Langlykke, A.F. and Kalk, J. P. (1986). In Manual of Industrial Microbiology and Biotechnology. (Eds A.L. Demain and N.A. Solomon), American Society of Microbiology, p. 363.

    Google Scholar 

  26. Lowry, O.H., Rosebrough, N.J., Farr, A. and Randall, R.J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265.

    CAS  Google Scholar 

  27. Luther, H. (1980). Charakterisierung des mechcanischen aufschlusses von mikroorgansimen — zellen mit der leitfahigkeitmessung. Nahrung 24, 165.

    Google Scholar 

  28. Trexlor, P.C. (1971). Vet. Rec., 88, 15.

    Article  Google Scholar 

  29. Knorr, D., Shetty, K.J. and Kinsella, J.E. (1979). Enzymatic lysis of yeast cell walls. Biotechnol. Bioeng., 21, 2011.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Millis, J.R. (1997). Mechanical disruption of cells. In: Goldberg, E. (eds) Handbook of Downstream Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1563-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1563-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7198-7

  • Online ISBN: 978-94-009-1563-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics