Skip to main content

Skin

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Skin is the largest organ in the human body. Its surface ranges in average between 1.5 and 1.8 m2 and the thickness varies between 0.5 (lower eyelid) and 15 mm (foot sole) in a young healthy adult, resulting in a tissue volume of 7,500–27,000 mm3. The skin has to fulfill a magnitude of physiological organic tasks, which is indicated by the variety of tissue thicknesses. These tasks include mechanistic, metabolic, energetic and immunologic aspects. Skin was the first organ which had been tissue engineered in vitro and translated back into clinical application. Therefore it is a prime target for regenerative therapies, not only due to its easy accessibility but also, because of the fact that skin is one of the most active and continuously regenerating organs and therefore a fascinating model to learn more about the human body’s intrinsic regenerative mechanisms.

This book chapter focuses on the regenerative capacities of skin tissue and its comprising cell compartments and explains how the principles of skin regeneration may be translated into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TEN:

Toxic epidermal necrolysis

EPO:

Erythropoietin

EPOR2:

EPO Receptor 2

EPOβ 1/2:

EPO Receptor β 1 or 2

TNF-α:

Tumour Necrosis Factor α

IL-2:

Interleukin 2

IL-6:

Interleukin 6

IL-8:

Interleukin 8

TGFβ 1–3:

Transforming growth factor beta 1–3

PDGF:

Platelet-derived growth factor

PLC:

Phospholipase C

PKB:

Proteinkinase B

NFκB:

Nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells

BAD:

Bcl-2-Antagonist of Cell Death

GSK-3β:

Glycogen Synthase Kinase 3

NO:

Nitric oxide

Ca:

Calcium

References

  • Aasen T, Belmonte JC (2010) Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 5(2):371–382. Epub 2010 Feb 4

    Article  PubMed  CAS  Google Scholar 

  • Bader A, Machens HG (2010) Recombinant human EPO plays a pivotal role as a topical stem cell activator to reverse effects of damage to the skin in aging and trauma. Rejun Res 13:499

    Article  Google Scholar 

  • Bernaudin M et al (1999) A potential role for EPO in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19:643–651

    Article  PubMed  CAS  Google Scholar 

  • Bodó E et al (2007) Human hair follicles are an extrarenal source and a nonhematopoietic target of EPO. FASEB 21:3346–3354

    Article  Google Scholar 

  • Bolognia JL et al (2007) Dermatology. Mosby, St. Louis. ISBN 1-4160-2999-0

    Google Scholar 

  • Brines M et al (2004) EPO mediated tissue protection through an EPO and common beta-subunit heteroreceptor. Proc Natl Acad Sci USA 101:14907–14912

    Article  PubMed  CAS  Google Scholar 

  • Brines M et al (2008) EPO-mediated tissue protection: reducing collateral damage from primary injury response. J Int Med 264:405–432

    Article  CAS  Google Scholar 

  • Buemi M et al (2004) Recombinant human EPO stimulates angiogenesis and healing of ischemic skin wounds. Shock 22:169–173

    Article  PubMed  CAS  Google Scholar 

  • Burns T et al (2006) Rook’s textbook of dermatology CD-ROM. Wiley, Maiden. ISBN 1405131306

    Google Scholar 

  • Converse JM et al (1975) Inosculation of vessels of skin graft and host bed: a fortuitous encounter. Br J Plast Surg 28:274–282

    Article  PubMed  CAS  Google Scholar 

  • Egana JT et al (2009) The use of glandular-derived stem cells to improve vascularization in scaffold-mediated dermal regeneration. Biometerials 30:5918–5926

    Article  CAS  Google Scholar 

  • Ferguson MWJ et al (2004) Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Phil Trans R Soc Lond B 359:839–850

    Article  CAS  Google Scholar 

  • Fernandes KJ et al (2008) Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential. Philos Trans R Soc Lond B Biol Sci 363:185–198

    Article  PubMed  CAS  Google Scholar 

  • Ferri C et al (2007) Treatment of severe scleroderma skin ulcers with recombinant human EPO. Clin Exp Dermatol 32:287–290

    Article  PubMed  CAS  Google Scholar 

  • Freedberg IM et al (2003) Fitzpatrick’s dermatology in general medicine. McGraw-Hill, New York

    Google Scholar 

  • Galeano M et al (2004) Recombinant human EPO stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetes 53:2509–2517

    Article  PubMed  CAS  Google Scholar 

  • Galeano M et al (2006) Recombinant human EPO improves angiogenesis and wound healing in experimental burn wounds. Crit Care Med 34:1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Hollander DA (2004) Reconstruction of extensive soft tissue loss by transplantation of dermal and epidermal equivalents. Zentralbl Chir 129:29–36

    Article  PubMed  CAS  Google Scholar 

  • Keast DH, Fraser C (2004) Treatment of chronic skin ulcers in individuals with anaemia of chronic disease using rhEPO: a review of four cases. Osteotomy Wound Manage 50:64–70

    Google Scholar 

  • Lorenz K et al (2008) Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp Dermatol 17:925–932

    Article  PubMed  CAS  Google Scholar 

  • Lotze MT et al (2007) The great full death: damage-associated molecular pattern molecules and reduction/oxidation regulated immunity. Immunol Rev 220:60–81

    Article  PubMed  CAS  Google Scholar 

  • McGrath JA et al (1971) Embryology of human skin. A review of ultrastructural studies. The Herman Beerman lecture. J Invest Dermatol 57:133–143

    Article  Google Scholar 

  • Meenakshi J et al (2005) Keloids and hyperthropic scars: a review. Indian J Plast Surg 38:175–179

    Article  Google Scholar 

  • Occleston NL et al (2008) Prevention and reduction of scarring in the skin by Transforming Growth Factor beta 3 (TGFbeta3): from laboratory discovery to clinical pharmaceutical. J Biomater Sci Polym Ed 19(8):1047–1063

    Article  PubMed  CAS  Google Scholar 

  • Peterson TE et al (2007) EPO tecting the endothelium. Br J Pharmacol 150:823–825

    Article  PubMed  CAS  Google Scholar 

  • Petschnik AE et al (2009) Phenotypic indications that human sweat glands are a rich source of nestin-positive stem cell populations. Br J Dermatol 162(2):380–383

    Article  PubMed  Google Scholar 

  • Racila D, Bickenbach JR (2009) Are epidermal stem cells unique with respect to aging? Aging 1(8):746–750

    PubMed  Google Scholar 

  • Rapini RP (2005) Practical dermatopathology. Elsevier/Mosby, Philadelphia. ISBN 0-323-01198-5

    Google Scholar 

  • Rezaeian F et al (2008) EPO protects critically perfused flap tissue. Ann Surg 248:919–929

    Article  PubMed  Google Scholar 

  • Rezaeian F et al (2010) EPO-induced upregulation of endothelial nitric oxide synthase but not vascular endothelial growth factor prevents musculocutaneus tissue from ischemic damage. Lab Invest 90:40

    Article  PubMed  CAS  Google Scholar 

  • Rockwell WB et al (1989) Keloids and hyperthropic scars: a comprehensive review. Plast Rec Surg 84:827–837

    Article  CAS  Google Scholar 

  • Rolletschek A, Wobus AM (2009) Induced human pluripotent stem cells: promises and open questions. Biol Chem 390:845–849

    Article  PubMed  CAS  Google Scholar 

  • Schultz C et al (2008) Attenuation of monocyte proinflammatory cytokine responses to Neisseria meningitidis in children by erythropoietin. Clin Exp Immunol 154:187–191

    Article  PubMed  CAS  Google Scholar 

  • Sorg H et al (2009) Effects of EPO in skin wound healing are dose related. FASEB 23:1–10

    Article  Google Scholar 

  • Takeuchi O et al (2007) Signalling pathways activated by microorganisms. Curr Opin Cell Biol 19:185–191

    Article  PubMed  CAS  Google Scholar 

  • Viviani B et al (2005) EPO protects primary hipocamppal neurons increasing the expression of brain-derived neurotrophic factor. J Neurochem 93:412–421

    Article  PubMed  CAS  Google Scholar 

  • Yazihan N et al (2008) Erythropoietin reduces lipopolysaccharide-induced cell damage and midkine secretion in U937 human histiocytic lymphoma cells. Adv Ther 25:502–514

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Günther Machens M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Machens, HG., Günter, C.I., Bader, A. (2013). Skin. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5690-8_43

Download citation

Publish with us

Policies and ethics