Skip to main content

Preclinical Animal Models for Segmental Bone Defect Research and Tissue Engineering

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Commonly applied therapies to achieve bone reconstruction or function are restricted to the transplantation of autografts and allografts, or the implantation of metal devices or ceramic-based implants. Bone grafts generally possess osteoconductive and osteoinductive properties. They are, however, limited in access and availability and harvest is associated with donor site morbidity, hemorrhage, risk of infection, insufficient transplant integration, and graft devitalisation. As a result, recent research focuses on the development of alternative therapeutic concepts. Available literature indicates that bone regeneration has become a focus area in the field of tissue engineering. Hence, a considerable number of research groups and commercial entities work on the development of tissue engineered constructs to aid bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and cost-intensive. Approval requires both comprehensive in vitro and in vivo studies necessitating the utilisation of large preclinical animal models. Consequently, to allow comparison between different studies and their outcomes, it is essential to standardize animal models, fixation devices, surgical procedures and methods of taking measurements to produce reliable data pools as a base for further research directions. The following chapter reviews animal models of the weight-bearing lower extremity utilized in the field, which include representations of fracture-healing, segmental bone defects, and fracture non-unions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerssens J, Boonen S, Lowet G et al (1998) Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139:663–670

    Article  PubMed  CAS  Google Scholar 

  • Anderson ML, Dhert WJ, de Bruijn JD et al (1999) Critical size defect in the goat’s os ilium: a model to evaluate bone grafts and substitutes. Clin Orthop Relat Res 364:231–239

    Article  PubMed  Google Scholar 

  • Augat P, Claes L (2008) Increased cortical remodeling after osteotomy causes posttraumatic osteopenia. Bone 43:539–543

    Article  PubMed  Google Scholar 

  • Augat P, Merk J, Genant HK et al (1997) Quantitative assessment of experimental fracture repair by peripheral computed tomography. Calcif Tissue Int 60:194–199

    Article  PubMed  CAS  Google Scholar 

  • Augat P, Margevicius K, Simon J et al (1998) Local tissue properties in bone healing: influence of size and stability of the osteotomy gap. J Orthop Res 16:475–481

    Article  PubMed  CAS  Google Scholar 

  • Augat P, Burger J, Schorlemmer S et al (2003) Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res 21:1011–1017

    Article  PubMed  Google Scholar 

  • Bail HJ, Kolbeck S, Krummrey G et al (2002) Systemic application of growth hormone for enhancement of secondary and intramembranous fracture healing. Horm Res 58(suppl 3):39–42

    Article  PubMed  CAS  Google Scholar 

  • Bloebaum RD, Ota DT, Skedros JG et al (1993) Comparison of human and canine external femoral morphologies in the context of total hip replacement. J Biomed Mater Res 27:1149–1159

    Article  PubMed  CAS  Google Scholar 

  • Bloemers FW, Blokhuis TJ, Patka P et al (2003) Autologous bone versus calcium-phosphate ceramics in treatment of experimental bone defects. J Biomed Mater Res B Appl Biomater 66:526–531

    Article  PubMed  CAS  Google Scholar 

  • Blokhuis TJ, Wippermann BW, den Boer FC et al (2000) Resorbable calcium phosphate particles as a carrier material for bone marrow in an ovine segmental defect. J Biomed Mater Res 51:369–375

    Article  PubMed  CAS  Google Scholar 

  • Blokhuis TJ, den Boer FC, Bramer JA et al (2001) Biomechanical and histological aspects of fracture healing, stimulated with osteogenic protein-1. Biomaterials 22:725–730

    Article  PubMed  CAS  Google Scholar 

  • Brodke D, Pedrozo HA, Kapur TA et al (2006) Bone grafts prepared with selective cell retention technology heal canine segmental defects as effectively as autograft. J Orthop Res 24:857–866

    Article  PubMed  Google Scholar 

  • Bucholz RW, Carlton A, Holmes R (1989) Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res 240:53–62

    PubMed  Google Scholar 

  • Bullens PH, Hannink G, Verdonschot N et al (2010) No effect of dynamic loading on bone graft healing in femoral segmental defect reconstructions in the goat. Injury 41:1284–1291

    Article  PubMed  Google Scholar 

  • Buser D, Schenk RK, Steinemann S et al (1991) Influence of surface characteristics on bone integration of titanium implants: a histomorphometric study in miniature pigs. J Biomed Mater Res 25:889–902

    Article  PubMed  CAS  Google Scholar 

  • Cacchioli A, Spaggiari B, Ravanetti F et al (2006) The critical sized bone defect: morphological study of bone healing. Ann Fac Med Vet di Parma 26:97–110

    Google Scholar 

  • Chapman MW, Bucholz R, Cornell C (1997) Treatment of acute fractures with a collagen-calcium phosphate graft material: a randomized clinical trial. J Bone Joint Surg Am 79:495–502

    PubMed  CAS  Google Scholar 

  • Cierny G III, Zorn KE (1994) Segmental tibial defects: comparing conventional and Ilizarov methodologies. Clin Orthop Relat Res 301:118–123

    PubMed  Google Scholar 

  • Claes LE, Wilke HJ, Augat P et al (1995) Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin Biomech (Bristol, Avon) 10:227–234

    Article  Google Scholar 

  • Claes LE, Heigele CA, Neidlinger-Wilke C et al (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355:S132–S147

    Article  PubMed  Google Scholar 

  • Claes L, Laule J, Wenger K et al (2000) The influence of stiffness of the fixator on maturation of callus after segmental transport. J Bone Joint Surg Br 82:142–148

    Article  PubMed  CAS  Google Scholar 

  • Claes L, Eckert-Hubner K, Augat P (2002) The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J Orthop Res 20:1099–1105

    Article  PubMed  Google Scholar 

  • Claes L, Ruter A, Mayr E (2005) Low-intensity ultrasound enhances maturation of callus after segmental transport. Clin Orthop Relat Res 430:189–194

    Article  PubMed  Google Scholar 

  • Claes L, Augat P, Schorlemmer S et al (2008) Temporary distraction and compression of a diaphyseal osteotomy accelerates bone healing. J Orthop Res 26:772–777

    Article  PubMed  Google Scholar 

  • Clements JR, Carpenter BB, Pourciau JK (2008) Treating segmental bone defects: a new technique. J Foot Ankle Surg 47:350–356

    Article  PubMed  Google Scholar 

  • Dai KR, Xu XL, Tang TT et al (2005) Repairing of goat tibial bone defects with BMP-2 gene-modified tissue-engineered bone. Calcif Tissue Int 77:55–61

    Article  PubMed  CAS  Google Scholar 

  • de Kleer V (2006) Development of bone. In: Sumner-Smith G (ed) Bone in clinical orthopedics. W.B. Saunders Co, Philadelphia, pp 1–80

    Google Scholar 

  • de Pablos J, Barrios C, Alfaro C et al (1994) Large experimental segmental bone defects treated by bone transportation with monolateral external distractors. Clin Orthop Relat Res 298:259–265

    PubMed  Google Scholar 

  • DeCoster TA, Gehlert RJ, Mikola EA et al (2004) Management of posttraumatic segmental bone defects. J Am Acad Orthop Surg 12:28–38

    PubMed  Google Scholar 

  • Dell PC, Burchardt H, Glowczewskie FP Jr (1985) A roentgenographic, biomechanical, and histological evaluation of vascularized and non-vascularized segmental fibular canine autografts. J Bone Joint Surg Am 67:105–112

    PubMed  CAS  Google Scholar 

  • den Boer FC, Patka P, Bakker FC et al (1999) New segmental long bone defect model in sheep: quantitative analysis of healing with dual energy x-ray absorptiometry. J Orthop Res 17:654–660

    Article  Google Scholar 

  • den Boer FC, Bramer JA, Blokhuis TJ et al (2002) Effect of recombinant human osteogenic protein-1 on the healing of a freshly closed diaphyseal fracture. Bone 31:158–164

    Article  Google Scholar 

  • den Boer FC, Wippermann BW, Blokhuis TJ et al (2003) Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow. J Orthop Res 21:521–528

    Article  CAS  Google Scholar 

  • Di Bella C, Aldini NN, Lucarelli E et al (2010) Osteogenic protein-1 associated with mesenchymal stem cells promote bone allograft integration. Tissue Eng A 16:2967–2976

    Article  CAS  Google Scholar 

  • Edwards RB 3rd, Seeherman HJ, Bogdanske JJ et al (2004) Percutaneous injection of recombinant human bone morphogenetic protein-2 in a calcium phosphate paste accelerates healing of a canine tibial osteotomy. J Bone Joint Surg Am 86-A:1425–1438

    PubMed  Google Scholar 

  • Egermann M, Goldhahn J, Schneider E (2005) Animal models for fracture treatment in osteoporosis. Osteoporos Int 16(Suppl 2):S129–138

    Article  PubMed  Google Scholar 

  • Einhorn TA (1999) Clinically applied models of bone regeneration in tissue engineering research. Clin Orthop Relat Res 367:S59–S67

    Article  PubMed  Google Scholar 

  • Einhorn TA, Lane JM, Burstein AH et al (1984) The healing of segmental bone defects induced by demineralized bone matrix: a radiographic and biomechanical study. J Bone Joint Surg Am 66:274–279

    PubMed  CAS  Google Scholar 

  • Eitel F, Klapp F, Jacobson W et al (1981) Bone regeneration in animals and in man: a contribution to understanding the relative value of animal experiments to human pathophysiology. Arch Orthop Trauma Surg 99:59–64

    Article  PubMed  CAS  Google Scholar 

  • Epari DR, Schell H, Bail HJ et al (2006) Instability prolongs the chondral phase during bone healing in sheep. Bone 38:864–870

    Article  PubMed  Google Scholar 

  • Epari DR, Lienau J, Schell H et al (2008) Pressure, oxygen tension and temperature in the periosteal callus during bone healing-an in vivo study in sheep. Bone 43(4):734–739

    Article  PubMed  Google Scholar 

  • Faria ML, Lu Y, Heaney K et al (2007) Recombinant human bone morphogenetic protein-2 in absorbable collagen sponge enhances bone healing of tibial osteotomies in dogs. Vet Surg 36:122–131

    Article  PubMed  Google Scholar 

  • Field JR, McGee M, Wildenauer C et al (2009) The utilization of a synthetic bone void filler (JAX) in the repair of a femoral segmental defect. Vet Comp Orthop Traumatol 22:87–95

    PubMed  CAS  Google Scholar 

  • Field JR, McGee M, Stanley R et al (2011) The efficacy of allogeneic mesenchymal precursor cells for the repair of an ovine tibial segmental defect. Vet Comp Orthop Traumatol 24:113–121

    Article  PubMed  CAS  Google Scholar 

  • Gao TJ, Lindholm TS, Kommonen B et al (1996) Enhanced healing of segmental tibial defects in sheep by a composite bone substitute composed of tricalcium phosphate cylinder, bone morphogenetic protein, and type IV collagen. J Biomed Mater Res 32:505–512

    Article  PubMed  CAS  Google Scholar 

  • Gao TJ, Lindholm TS, Kommonen B et al (1997) The use of a coral composite implant containing bone morphogenetic protein to repair a segmental tibial defect in sheep. Int Orthop 21:194–200

    Article  PubMed  CAS  Google Scholar 

  • Gazdag AR, Lane JM, Glaser D et al (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3:1–8

    PubMed  Google Scholar 

  • Gerhart TN, Kirker-Head CA, Kriz MJ et al (1993) Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin Orthop Relat Res 293:317–326

    PubMed  Google Scholar 

  • Gilbert JA, Dahners LE, Atkinson MA (1989) The effect of external fixation stiffness on early healing of transverse osteotomies. J Orthop Res 7:389–397

    Article  PubMed  CAS  Google Scholar 

  • Gillett N, Brown SA, Dumbleton JH et al (1985) The use of short carbon fibre reinforced thermoplastic plates for fracture fixation. Biomaterials 6:113–121

    Article  PubMed  CAS  Google Scholar 

  • Goldstrohm GL, Mears DC, Swartz WM (1984) The results of 39 fractures complicated by major segmental bone loss and/or leg length discrepancy. J Trauma 24:50–58

    Article  PubMed  CAS  Google Scholar 

  • Gong JK, Arnold JS, Cohn SH (1964) The density of organic and volatile and non-volatile inorganic components of bone. Anat Rec 149:319–324

    Article  PubMed  CAS  Google Scholar 

  • Goodship AE, Watkins PE, Rigby HS et al (1993) The role of fixator frame stiffness in the control of fracture healing: an experimental study. J Biomech 26:1027–1035

    Article  PubMed  CAS  Google Scholar 

  • Gotterbarm T, Breusch SJ, Schneider U et al (2008) The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim 42:71–82

    Article  PubMed  CAS  Google Scholar 

  • Gray AC, White TO, Clutton E et al (2009) The stress response to bilateral femoral fractures: a comparison of primary intramedullary nailing and external fixation. J Orthop Trauma 23:90–97 (discussion 98–99)

    Article  PubMed  CAS  Google Scholar 

  • Gugala Z, Gogolewski S (1999) Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study. J Orthop Trauma 13:187–195

    Article  PubMed  CAS  Google Scholar 

  • Gugala Z, Gogolewski S (2002) Healing of critical-size segmental bone defects in the sheep tibiae using bioresorbable polylactide membranes. Injury 33(suppl 2):B71–B76

    Article  PubMed  Google Scholar 

  • Gugala Z, Lindsey RW, Gogolewski S (2007) New approaches in the treatment of critical-size segmental defects in long bones. Macromol Symp 253:147–161

    Article  CAS  Google Scholar 

  • Hantes ME, Mavrodontidis AN, Zalavras CG et al (2004) Low-intensity transosseous ultrasound accelerates osteotomy healing in a sheep fracture model. J Bone Joint Surg Am 86-A:2275–2282

    PubMed  Google Scholar 

  • Hara Y, Nakamura T, Fukuda H et al (2003) Changes of biomechanical characteristics of the bone in experimental tibial osteotomy model in the dog. J Vet Med Sci 65:103–107

    Article  PubMed  Google Scholar 

  • Heitemeyer U, Claes L, Hierholzer G (1990) The significance of postoperative stability for osseous repair of a multiple fragment fracture. Animal experiment studies. Unfallchirurg 93:49–55

    PubMed  CAS  Google Scholar 

  • Hente R, Cordey J, Rahn BA et al (1999) Fracture healing of the sheep tibia treated using a unilateral external fixator: comparison of static and dynamic fixation. Injury 30(suppl 1):A44–A51

    PubMed  Google Scholar 

  • Hill PF, Watkins PE (2001) The prevention of experimental osteomyelitis in a model of gunshot fracture in the pig. Eur J Orthop Surg Traumatol 11:237–241

    Article  Google Scholar 

  • Huang J, Zhang L, Chu B et al (2011) Repair of bone defect in caprine tibia using a laminated scaffold with bone marrow stromal cells loaded poly (l-lactic acid)/beta-tricalcium phosphate. Artif Organs 35:49–57

    Article  PubMed  CAS  Google Scholar 

  • Hupel TM, Weinberg JA, Aksenov SA et al (2001) Effect of unreamed, limited reamed, and standard reamed intramedullary nailing on cortical bone porosity and new bone formation. J Orthop Trauma 15:18–27

    Article  PubMed  CAS  Google Scholar 

  • Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: part II: the influence of the rate and frequency of distraction. Clin Orthop Relat Res 239:263–285

    PubMed  Google Scholar 

  • Ilizarov GA, Gracheva VI (1971) Bloodless treatment of congenital pseudarthrosis of the crus with simultaneous elimination of shortening using dosed distraction. Ortop Travmatol Protez 32:42–46

    PubMed  CAS  Google Scholar 

  • Itoh S, Kikuchi M, Takakuda K et al (2002) Implantation study of a novel hydroxyapatite/collagen (HAp/col) composite into weight-bearing sites of dogs. J Biomed Mater Res 63:507–515

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Podworny N, Hupel TM et al (1999) Influence of plate design on cortical bone perfusion and fracture healing in canine segmental tibial fractures. J Orthop Trauma 13:178–186

    Article  PubMed  CAS  Google Scholar 

  • Jiang CC, Chiang H, Liao CJ et al (2007) Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res 25:1277–1290

    Article  PubMed  CAS  Google Scholar 

  • Jockisch KA, Brown SA, Bauer TW et al (1992) Biological response to chopped-carbon-fiber-reinforced peek. J Biomed Mater Res 26:133–146

    Article  PubMed  CAS  Google Scholar 

  • Kettunen J, Makela A, Miettinen H et al (1999) Fixation of femoral shaft osteotomy with an intramedullary composite rod: an experimental study on dogs with a two-year follow-up. J Biomater Sci Polym Ed 10:33–45

    Article  PubMed  CAS  Google Scholar 

  • Kilian O, Wenisch S, Alt V et al (2007) Effects of platelet factors on biodegradation and osteogenesis in metaphyseal defects filled with nanoparticular hydroxyapatite – an experimental study in minipigs. Growth Factors 25:191–201

    Article  PubMed  CAS  Google Scholar 

  • Kirker-Head CA, Gerhart TN, Armstrong R et al (1998) Healing bone using recombinant human bone morphogenetic protein 2 and copolymer. Clin Orthop Relat Res 349:205–217

    Article  PubMed  Google Scholar 

  • Klein C, Sprecher C, Rahn BA et al (2010) Unreamed or RIA reamed nailing: an experimental sheep study using comparative histological assessment of affected bone tissue in an acute fracture model. Injury 41(suppl 2):S32–S37

    Article  PubMed  Google Scholar 

  • Kleinman PL, Zurakowski D, Strauss KJ et al (2008) Detection of simulated inflicted metaphyseal fractures in a fetal pig model: image optimization and dose reduction with computed radiography. Radiology 247:381–390

    PubMed  Google Scholar 

  • Knothe Tate ML, Ritzman TF, Schneider E et al (2007) Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects. J Bone Joint Surg Am 89:307–316

    Article  PubMed  Google Scholar 

  • Knothe Tate ML, Chang H, Moore SR et al (2011) Surgical membranes as directional delivery devices to generate tissue: testing in an ovine critical sized defect model. PloS One 6:e28702

    Article  PubMed  CAS  Google Scholar 

  • Kokubo S, Mochizuki M, Fukushima S et al (2004) Long-term stability of bone tissues induced by an osteoinductive biomaterial, recombinant human bone morphogenetic protein-2 and a biodegradable carrier. Biomaterials 25:1795–1803

    Article  PubMed  CAS  Google Scholar 

  • Komaki H, Tanaka T, Chazono M et al (2006) Repair of segmental bone defects in rabbit tibiae using a complex of beta-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials 27:5118–5126

    Article  PubMed  CAS  Google Scholar 

  • Kuttenberger JJ, Stubinger S, Waibel A et al (2008) Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results. Photomed Laser Surg 26:129–136

    Article  PubMed  Google Scholar 

  • Laurencin C, Khan Y, El-Amin SF (2006) Bone graft substitutes. Expert Rev Med Devices 3:49–57

    Article  PubMed  CAS  Google Scholar 

  • Lian ZD, Chuanchang L, Wei et al (2009) Enhanced healing of goat femur-defect using BMP7 gene-modified BMSCs and load-bearing tissue-engineered bone. J Orthop Res 28:412–418

    Google Scholar 

  • Liebschner MA (2004) Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 25:1697–1714

    Article  PubMed  CAS  Google Scholar 

  • Lindsey RW, Gugala Z, Milne E et al (2006) The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect. J Orthop Res 24:1438–1453

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Zhao L, Zhang W et al (2008) Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate. J Mater Sci Mater Med 19:2367–2376

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Li X, Fan Y et al (2010) Repairing goat tibia segmental bone defect using scaffold cultured with mesenchymal stem cells. Journal of biomedical materials research. Part B. J Biomed Mater Res B Appl Biomater 94:44–52

    PubMed  Google Scholar 

  • Lu Y, Nemke B, Lorang DM et al (2009) Comparison of a new braid fixation system to an interlocking intramedullary nail for tibial osteotomy repair in an ovine model. Vet Surg 38:467–476

    Article  PubMed  Google Scholar 

  • Macdonald W, Skirving AP, Scull ER (1988) A device for producing experimental fractures. Acta Orthop Scand 59:542–544

    Article  PubMed  CAS  Google Scholar 

  • Maissen O, Eckhardt C, Gogolewski S et al (2006) Mechanical and radiological assessment of the influence of rhTGFbeta-3 on bone regeneration in a segmental defect in the ovine tibia: pilot study. J Orthop Res 24:1670–1678

    Article  PubMed  CAS  Google Scholar 

  • Manjubala I, Liu Y, Epari DR et al (2009) Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone 45:185–192

    Article  PubMed  CAS  Google Scholar 

  • Markel MD, Wikenheiser MA, Chao EY (1990) A study of fracture callus material properties: relationship to the torsional strength of bone. J Orthop Res 8:843–850

    Article  PubMed  CAS  Google Scholar 

  • Martini L, Fini M, Giavaresi G et al (2001) Sheep model in orthopedic research: a literature review. Comp Med 51:292–299

    PubMed  CAS  Google Scholar 

  • Mastrogiacomo M, Corsi A, Francioso E et al (2006) Reconstruction of extensive long bone defects in sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate. Tissue Eng 12:1261–1273

    Article  PubMed  CAS  Google Scholar 

  • Meinel L, Zoidis E, Zapf J et al (2003) Localized insulin-like growth factor I delivery to enhance new bone formation. Bone 33:660–672

    Article  PubMed  CAS  Google Scholar 

  • Miettinen H, Makela EA, Vainio J et al (1992) The effect of an intramedullary self-reinforced poly-l-lactide (SR-PLLA) implant on growing bone with special reference to fixation properties: an experimental study on growing rabbits. J Biomater Sci Polym Ed 3:443–450

    Article  PubMed  CAS  Google Scholar 

  • Mosekilde L, Weisbrode SE, Safron JA et al (1993) Calcium-restricted ovariectomized Sinclair S-1 minipigs: an animal model of osteopenia and trabecular plate perforation. Bone 14:379–382

    Article  PubMed  CAS  Google Scholar 

  • Mousavi M, David R, Schwendenwein I et al (2002) Influence of controlled reaming on fat intravasation after femoral osteotomy in sheep. Clin Orthop Relat Res 394:263–270

    Article  PubMed  Google Scholar 

  • Muscolo DL, Ayerza MA, Aponte-Tinao LA (2006) Massive allograft use in orthopedic oncology. Orthop Clin North Am 37:65–74

    Article  PubMed  Google Scholar 

  • Nafei A, Danielsen CC, Linde F et al (2000) Properties of growing trabecular ovine bone. Part I: mechanical and physical properties. J Bone Joint Surg Br 82:910–920

    Article  PubMed  CAS  Google Scholar 

  • Nair MB, Varma HK, Menon KV et al (2009) Reconstruction of goat femur segmental defects using triphasic ceramic-coated hydroxyapatite in combination with autologous cells and platelet-rich plasma. Acta Biomater 5:1742–1755

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Hara Y, Tagawa M et al (1998) Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J Bone Miner Res 13:942–949

    Article  PubMed  CAS  Google Scholar 

  • Newman E, Turner AS, Wark JD (1995) The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 16:277S–284S

    PubMed  CAS  Google Scholar 

  • Neyt JG, Buckwalter JA, Carroll NC (1998) Use of animal models in musculoskeletal research. Iowa Orthop J 18:118–123

    PubMed  CAS  Google Scholar 

  • Niemeyer P, Schonberger TS, Hahn J et al (2009) Xenogenic transplantation of human mesenchymal stem cells in a critical size defect of the sheep tibia for bone regeneration. Tissue Eng A 16:33–43

    Google Scholar 

  • Niemeyer P, Fechner K, Milz S et al (2010) Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 31:3572–3579

    Article  PubMed  CAS  Google Scholar 

  • O’Loughlin PF, Morr S, Bogunovic L et al (2008) Selection and development of preclinical models in fracture-healing research. J Bone Joint Surg Am 90(suppl 1):79–84

    Article  PubMed  Google Scholar 

  • Oest ME, Dupont KM, Kong HJ et al (2007) Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res 25:941–950

    Article  PubMed  CAS  Google Scholar 

  • Pearce AI, Richards RG, Milz S et al (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 13:1–10

    PubMed  CAS  Google Scholar 

  • Pek YS, Gao S, Arshad MS et al (2008) Porous collagen-apatite nanocomposite foams as bone regeneration scaffolds. Biomaterials 29:4300–4305

    Article  PubMed  CAS  Google Scholar 

  • Perka C, Schultz O, Spitzer RS et al (2000) Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 21:1145–1153

    Article  PubMed  CAS  Google Scholar 

  • Perry CR (1999) Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res 360:71–86

    Article  PubMed  Google Scholar 

  • Petite H, Viateau V, Bensaid W et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963

    Article  PubMed  CAS  Google Scholar 

  • Puelacher WC, Vacanti JP, Ferraro NF et al (1996) Femoral shaft reconstruction using tissue-engineered growth of bone. Int J Oral Maxillofac Surg 25:223–228

    Article  PubMed  CAS  Google Scholar 

  • Rahal SC, Volpi RS, Vulcano LC (2005) Treatment of segmental tibial defects using acute bone shortening followed by gradual lengthening with circular external fixator. J Vet Med A Physiol Pathol Clin Med 52:180–185

    Article  PubMed  CAS  Google Scholar 

  • Raschke M, Kolbeck S, Bail H et al (2001) Homologous growth hormone accelerates healing of segmental bone defects. Bone 29:368–373

    Article  PubMed  CAS  Google Scholar 

  • Ravaglioli A, Krajewski A, Celotti GC et al (1996) Mineral evolution of bone. Biomaterials 17:617–622

    Article  PubMed  CAS  Google Scholar 

  • Reichert JC, Epari DR, Wullschleger ME et al (2010) Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies. Tissue Eng Part B Rev 16:93–104

    Article  PubMed  Google Scholar 

  • Reichert JC, Wullschleger ME, Cipitria A et al (2011) Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop 35:1229–1236

    Article  PubMed  Google Scholar 

  • Reichert JC, Epari DR, Wullschleger ME et al (2012) Bone tissue engineering: reconstruction of critical sized segmental bone defects in the ovine tibia. Orthopade 41:280–287

    Article  PubMed  CAS  Google Scholar 

  • Rimondini L, Nicoli-Aldini N, Fini M et al (2005) In vivo experimental study on bone regeneration in critical bone defects using an injectable biodegradable PLA/PGA copolymer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99:148–154

    Article  PubMed  Google Scholar 

  • Rozen N, Bick T, Bajayo A et al (2009) Transplanted blood-derived endothelial progenitor cells (EPC) enhance bridging of sheep tibia critical size defects. Bone 45:918–924

    Article  PubMed  CAS  Google Scholar 

  • Sarkar MR, Augat P, Shefelbine SJ et al (2006) Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. Biomaterials 27:1817–1823

    Article  PubMed  CAS  Google Scholar 

  • Schell H, Epari DR, Kassi JP et al (2005) The course of bone healing is influenced by the initial shear fixation stability. J Orthop Res 23:1022–1028

    Article  PubMed  CAS  Google Scholar 

  • Schemitsch EH, Kowalski MJ, Swiontkowski MF et al (1994) Cortical bone blood flow in reamed and unreamed locked intramedullary nailing: a fractured tibia model in sheep. J Orthop Trauma 8:373–382

    Article  PubMed  CAS  Google Scholar 

  • Schemitsch EH, Kowalski MJ, Swiontkowski MF (1996) Soft-tissue blood flow following reamed versus unreamed locked intramedullary nailing: a fractured sheep tibia model. Ann Plast Surg 36:70–75

    Article  PubMed  CAS  Google Scholar 

  • Schimandle JH, Boden SD (1994) Spine update: the use of animal models to study spinal fusion. Spine 19:1998–2006

    Article  PubMed  CAS  Google Scholar 

  • Schneiders W, Reinstorf A, Biewener A et al (2008) In vivo effects of modification of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia. J Orthop Res 27:15–21

    Google Scholar 

  • Schnettler R, Alt V, Dingeldein E et al (2003) Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants. Biomaterials 24:4603–4608

    Article  PubMed  CAS  Google Scholar 

  • Sciadini MF, Dawson JM, Johnson KD (1997) Evaluation of bovine-derived bone protein with a natural coral carrier as a bone-graft substitute in a canine segmental defect model. J Orthop Res 15:844–857

    Article  PubMed  CAS  Google Scholar 

  • Skirving AP, Day R, Macdonald W et al (1987) Carbon fiber reinforced plastic (CFRP) plates versus stainless steel dynamic compression plates in the treatment of fractures of the tibiae in dogs. Clin Orthop Relat Res 224:117–124

    PubMed  Google Scholar 

  • Starr AJ, Welch RD, Eastridge BJ et al (2002) The effect of hemorrhagic shock in a caprine tibial fracture model. J Orthop Trauma 16:250–256

    Article  PubMed  Google Scholar 

  • Stevenson S (1998) Enhancement of fracture healing with autogenous and allogeneic bone grafts. Clin Orthop Relat Res 355:S239–S246

    Article  PubMed  Google Scholar 

  • Sun C, Huang G, Christensen FB et al (1999) Mechanical and histological analysis of bone-pedicle screw interface in vivo: titanium versus stainless steel. Chin Med J (Engl) 112:456–460

    CAS  Google Scholar 

  • Takigami H, Kumagai K, Latson L et al (2007) Bone formation following OP-1 implantation is improved by addition of autogenous bone marrow cells in a canine femur defect model. J Orthop Res 25:1333–1342

    Article  PubMed  Google Scholar 

  • Taylor GI, Miller GD, Ham FJ (1975) The free vascularized bone graft: a clinical extension of microvascular techniques. Plast Reconstr Surg 55:533–544

    Article  PubMed  CAS  Google Scholar 

  • Taylor WR, Ehrig RM, Duda GN et al (2005) On the influence of soft tissue coverage in the determination of bone kinematics using skin markers. J Orthop Res 23:726–734

    Article  PubMed  Google Scholar 

  • Taylor WR, Ehrig RM, Heller MO et al (2006) Tibio-femoral joint contact forces in sheep. J Biomech 39:791–798

    Article  PubMed  Google Scholar 

  • Teixeira CR, Rahal SC, Volpi RS et al (2007) Tibial segmental bone defect treated with bone plate and cage filled with either xenogeneic composite or autologous cortical bone graft: an experimental study in sheep. Vet Comp Orthop Traumatol 20:269–276

    PubMed  CAS  Google Scholar 

  • Tepic S, Remiger AR, Morikawa K et al (1997) Strength recovery in fractured sheep tibia treated with a plate or an internal fixator: an experimental study with a two-year follow-up. J Orthop Trauma 11:14–23

    Article  PubMed  CAS  Google Scholar 

  • Thorwarth M, Schultze-Mosgau S, Kessler P et al (2005) Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg 63:1626–1633

    Article  PubMed  Google Scholar 

  • Tiedeman JJ, Lippiello L, Connolly JF et al (1990) Quantitative roentgenographic densitometry for assessing fracture healing. Clin Orthop Relat Res 253:279–286

    PubMed  Google Scholar 

  • Tseng SS, Lee MA, Reddi AH (2008) Nonunions and the potential of stem cells in fracture-healing. J Bone Joint Surg Am 90(Suppl 1):92–98

    Article  PubMed  Google Scholar 

  • Tyllianakis M, Deligianni D, Panagopoulos A et al (2007) Biomechanical comparison of callus over a locked intramedullary nail in various segmental bone defects in a sheep model. Med Sci Monit 13:BR125–BR130

    PubMed  Google Scholar 

  • van der Elst M, Klein CP, de Blieck-Hogervorst JM et al (1999) Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: a long-term in vivo study in sheep femora. Biomaterials 20:121–128

    Article  PubMed  Google Scholar 

  • Viateau V, Guillemin G, Yang YC et al (2004) A technique for creating critical-size defects in the metatarsus of sheep for use in investigation of healing of long-bone defects. Am J Vet Res 65:1653–1657

    Article  PubMed  Google Scholar 

  • Viateau V, Guillemin G, Calando Y et al (2006) Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: an ovine model. Vet Surg 35:445–452

    Article  PubMed  Google Scholar 

  • Viateau V, Guillemin G, Bousson V et al (2007) Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep. J Orthop Res 25:741–749

    Article  PubMed  Google Scholar 

  • Wallace AL, Makki R, Weiss JB et al (1995) Measurement of serum angiogenic factor in devascularized experimental tibial fractures. J Orthop Trauma 9:324–332

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Mabrey JD, Agrawal CM (1998) An interspecies comparison of bone fracture properties. Biomed Mater Eng 8:1–9

    PubMed  CAS  Google Scholar 

  • Wang CJ, Huang HY, Chen HH et al (2001) Effect of shock wave therapy on acute fractures of the tibia: a study in a dog model. Clin Orthop Relat Res 387:112–118

    Article  PubMed  Google Scholar 

  • Wefer J, Wefer A, Schratt HE et al (2000) Healing of autologous cancellous bone transplants and hydroxylapatite ceramics in tibial segment defects: value of ultrasonic follow up. Unfallchirurg 103:452–461

    Article  PubMed  CAS  Google Scholar 

  • Welch RD, Jones AL, Bucholz RW et al (1998) Effect of recombinant human bone morphogenetic protein-2 on fracture healing in a goat tibial fracture model. J Bone Miner Res 13:1483–1490

    Article  PubMed  CAS  Google Scholar 

  • Wildemann B, Kadow-Romacker A, Pruss A et al (2007) Quantification of growth factors in allogenic bone grafts extracted with three different methods. Cell Tissue Bank 8:107–114

    Article  PubMed  CAS  Google Scholar 

  • Wilson DJ, Morgan RL, Hesselden KL et al (2009) A single-channel telemetric intramedullary nail for in vivo measurement of fracture healing. J Orthop Trauma 23:702–709

    Article  PubMed  Google Scholar 

  • Windhagen H, Kolbeck S, Bail H et al (2000) Quantitative assessment of in vivo bone regeneration consolidation in distraction osteogenesis. J Orthop Res 18:912–919

    Article  PubMed  CAS  Google Scholar 

  • Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3:192–195

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Liu W, Cui L et al (2006) Tissue-engineered bone repair of goat-femur defects with osteogenically induced bone marrow stromal cells. Tissue Eng 12:423–433

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Chuanchang D, Wei L et al (2010) Enhanced healing of goat femur-defect using BMP7 gene-modified BMSCs and load-bearing tissue-engineered bone. J Orthop Res 28:412–418

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar W. Hutmacher Ph.D., M.B.A., M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reichert, J.C., Berner, A., Saifzadeh, S., Hutmacher, D.W. (2013). Preclinical Animal Models for Segmental Bone Defect Research and Tissue Engineering. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5690-8_40

Download citation

Publish with us

Policies and ethics