Skip to main content
  • 1001 Accesses

Abstract

David Hume (1711–1767) is credited with coining the phrase “A wise man, therefore, proportions his belief to the evidence.” This was later brought to a more modern understanding by Marcello Truzzi as “An extraordinary claim requires extraordinary proof” (Truzzi 1978). Certainly such an admonition should be considered by any and all scientists attempting to carry out research on ancient living microbes or DNA. Such supporting evidence should include several factors with publications and reports often seeming to be more about the evidence than about the discovery. The key bits of supporting information described here range from the overall geological pedigree of the formation and the individual sample, the sterilization assurance levels and even the design of the laboratory in which the work occurred. This chapter outlines how to establish these various types of evidence in order to support claims that any isolate or DNA sequence is as old as the crystal in which it was found. Adherence to these ideas will never make claims of ancient life immediately accepted. However, experience has shown that having these various bits of information on hand will at least make the debate more likely to have a positive outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bobst AL, Lowenstein TK, Jordan TE, Godfrey LV, Hein MC, Ku TL, Luo S (2001) A 106 kapaleoclimate record from the Salar de Atacama, northern Chile. Palaeogeo Palaeoclimatol Palaeoecol 173:21–42

    Article  Google Scholar 

  • Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25–40 million year old Dominican Amber. Science 268:1060–1064

    Article  CAS  Google Scholar 

  • Chernikoff S (1999) Geology, 2nd edn. Houghton Mifflin Co., New York

    Google Scholar 

  • Dombrowski H (1963) Bacteria from Paleozoic salt deposits. Annu NY Acad Sci 108:453–460

    Article  CAS  Google Scholar 

  • Dombrowski H (1966) Geological problems in the question of living bacteria in Paleozoic salt deposits. Second Symposium on Salt 1:215–220

    CAS  Google Scholar 

  • Farrell MF, Turner HG (1932) Bacteria in anthracite coal. J Bacteriol 23:155–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432–436

    Article  CAS  Google Scholar 

  • Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287

    Article  CAS  Google Scholar 

  • Graur D, Pupko T (2001) The Permian bacterium that isn’t. Mol Biol Evol 18:1143–1146

    Article  CAS  Google Scholar 

  • Griffith JD, Wilcox S, Powers DW, Nelson R, Baxter B (2008) Discovery of abundant cellulose microfibers encased in 250 Ma Permian halite: a macromolecular target in the search for life on other planets. Astrobiology 8:215–228

    Article  CAS  Google Scholar 

  • Hazen RM, Roedder E (2001) How old are bacteria from the Permian age? Nature 411:155

    Article  CAS  Google Scholar 

  • Holt RM, Powers DW (1990) Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant. U.S. Department of Energy, Carslbad, NM, DOE/WIPP 90-051

    Google Scholar 

  • Kiminek G, Bada JL, Pogliano K, Ward JF (2003) Radiation-dependent limit for the viability of bacterial spores in halite fluid inclusions and on Mars. Radiat Res 159:722–729

    Google Scholar 

  • Lipman CB (1931) Living microorganisms in ancient rocks. J Bacteriol 22:183–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipman CB (1937) Bacteria in coal. J Bacteriol 34:483–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowenstein TK, Li J, Brown C, Roberts SM, Ku Tl, Luo S, Yang W (1999) 200 k.y. paleoclimate record from Death Valley salt core. Geology 27:3–6

    Article  Google Scholar 

  • Mileikowsky C, Cucinotta FA, Wilson JA, Gladman B, Lindegren L, Melosh J, Rickman H, Valtonen M, Zheng JQ (2000) Natural transfer of viable microbes in space 1. from Mars to Earth and Earth to Mars. Icarus 145:391–427

    Article  CAS  Google Scholar 

  • Mormile MR, Biesen MA, Gutierrez MC, Ventosa A, Pavolvich JB, Onstott TC, Frederickson JK (2003) Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ Microbiol 5:1094–1102

    Article  Google Scholar 

  • Nicastro AJ, Vreeland RH, Rosenzweig WD (2002) Limits imposed by ionizing radiation on the long term survival of trapped bacterial spores. J Radiation Biology 78:891–901

    Article  CAS  Google Scholar 

  • Nickle DC, Learn GH, Rain MW, Mullins JI, Mittler JE (2002) Curiously modern DNA for a “250 million-year-old” bacterium. J Mol Evol 54:134–137

    Article  CAS  Google Scholar 

  • Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134:1365–1373

    Google Scholar 

  • Norton CF, McGenity TJ, Grant WD (1993) Archaealhalophilies (halobacteria) from two British salt mines. J Gen Microbiol 139:1077–1081

    Article  CAS  Google Scholar 

  • Park JS, Cho BC, Lowenstein TK, Timofeeff MN, Rosenzweig WD, Vreeland RH (2009) Ancient primary salts confirm long term DNA survival and show aspects of microbial evolution and ecology. Geobiology 7:515–523

    Article  CAS  Google Scholar 

  • Powers DW, Vreeland RH, Rosenzweig WD (2001) Biogeology—How old are bacteria from the Permian age?—Reply Nature 411:155–156

    Article  CAS  Google Scholar 

  • Radax C, Gruber C, Stan-Lotter H (2001) Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt. Extremophiles 5:221–228

    Article  CAS  Google Scholar 

  • Reiser R, Tasch P (1960) Investigation of the viability of osmophile bacteria of great geological age. Trans Kans Acad Sci 63:31–34

    Article  CAS  Google Scholar 

  • Rosenzweig WD, Woish J, Petersen J, Vreeland RH (2000) Development of a protocol to retrieve microorganisms from ancient salt crystals. Geomicrobiology 17:185–192

    Article  Google Scholar 

  • Satterfield CL, Lowenstein TK, Vreeland RH, Rosenzweig WD, Powers DW (2005) New evidence for 250Ma age of halophilic bacterium from a Permian salt crystal. Geology 33:265–268

    Article  CAS  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN (2009a) Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley CA. Astrobiology 9:467–482

    Article  CAS  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2009b) How do prokaryotes survive in fluid inclusions in halite for 30 k.y.? Geology 37:1059–1062

    Article  Google Scholar 

  • Stan-Lotter H, McGenity TJ, Legat A, Denner EBM, Glaser K, Stetter KO, Wanner G (1999) Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiology 145:3565–3574

    Article  CAS  Google Scholar 

  • Stan-Lotter H, Radax C, Gruber C, McGenity TJ, Legat A, Wanner G, Denner EBM (2000) The distribution of viable microorganisms in Permo-Triassic rock salt. In: Geertman RM (ed) SALT 2000. 8th World Salt Symposium Amsterdam. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Stan-Lotter H, Radax C, McGenity TJ, Legat A, Pfaffenhuemer M, Wieland H, Gruber C, Denner EBM (2001) From intraterrestrials to extraterrestrials—viable haloarchaea in ancient salt deposits. In: Ventosa A (ed) HalophilesSpringer, pp 89–102

    Google Scholar 

  • Tadros ME, Tucker MD (2003) Formulations for neutralization of chemical and biological toxants. US Patent 6:566–574 B1

    Google Scholar 

  • Tasch P (1960) Paleoecological observations of the Wellington salt (Hutchinson member). Trans Kans Acad Sci 63:24–30

    Article  Google Scholar 

  • Tasch P (1963) Dead and viable fossil salt bacteria. UnivWichita Bull 39:3–7

    Google Scholar 

  • Truzzi M (1978) On the extraordinary: an attempt at clarification. Zetetic Scholar 1:11

    Google Scholar 

  • Vreeland RH, Powers DW (1998) Microbiological considerations for sampling ancient salt formations. In Oren A (ed) Biology and geochemistry of hypersaline environments. CRC Press Series on Life in Extreme and Unusual Environments. Chap. 5, p 53–73

    Google Scholar 

  • Vreeland RH, Rosenzweig WD (1998) Microorganisms in ancient salt formations: Possibilities and potentials. In: Seckbach J (ed) Enigmatic microorganisms and extreme environments. Kluwer, Dordrecht

    Google Scholar 

  • Vreeland RH, Piselli AF Jr, McDonnough S, Meyers SS (1998) Distribution and diversity of halophilic bacteria in a subsurface salt formation. Extremophiles 2:321–331

    Article  CAS  Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million year old bacterium from primary salt crystals. Nature 408:897–900

    Article  Google Scholar 

  • Vreeland RH, Rosenzweig WD (2002) The question of uniqueness of ancient bacteria. J Ind Microbiol Biotechnol 28:32–41

    Article  CAS  Google Scholar 

  • Vreeland RH (2006) Extraction of microorganisms from ancient crystals. In: Rainey F, Oren A (eds) Methods in microbiology, vol. 35. Elsevier, The Netherlands, p 553–567

    Chapter  Google Scholar 

  • Vreeland RH, Lowenstein T, Timofeeff M, Satterfield C, DiFerdinando J, Jones J, Monson A, Rosenzweig WD, Cho BC, Park JS, Wallace A, Grant WD (2007) The isolation of live 125 million year old haloarchaea. Geomicrobiol J 24:274–282

    Article  Google Scholar 

  • Zolensky ME, Bodnar RJ, Gibson EK, Nyquist LE, Reese Y, Shih CY, Wiesman H (1999) Asteroidal water within fluid inclusion bearing halite in an H5 chondrite Monahans (1998). Science 285:1377–1379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell H. Vreeland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vreeland, R.H. (2012). Searching for Microbes and DNA in Ancient Halite. In: Vreeland, R.H. (eds) Advances in Understanding the Biology of Halophilic Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5539-0_6

Download citation

Publish with us

Policies and ethics