Advertisement

Microorganisms in Evaporites: Review of Modern Geomicrobiology

  • Tim K. LowensteinEmail author
Chapter

Abstract

The “geomicrobiology” of evaporites—microorganisms and associated biomaterials preserved in saline minerals—has seen great progress over the past decade. There are many new reports of culturing archaea and bacteria (Stan-Lotter et al. 1999, 2002; Vreeland et al. 2000, 2007; Mormile et al. 2003; Gruber et al. 2004; Schubert et al. 2009b, 2010a; Gramain et al. 2011), sequencing prokaryote DNA (Radax et al. 2001; Fish et al. 2002; Park et al. 2009; Panieri et al. 2010; Gramain et al. 2011), and identifying organic compounds such as beta carotene and cellulose (Griffith et al. 2008; Schubert et al. 2010b; Lowenstein et al. 2011) from ancient samples of halite (NaCl) and gypsum (CaSO4 · 2H2O). Tiny droplets of brine trapped within evaporite minerals, called fluid or brine inclusions, seem to be an important, but not exclusive, haven for microbes and biomaterials in buried evaporites. Given the expanded interest in microbial life in evaporites, and the potential implications regarding the search for life in the solar system, it seemed worthwhile to summarize the most important findings in the geomicrobiology of evaporites. The last such summary of advances in the geomicrobiology of ancient evaporites was by Vreeland and Powers (1999), so the focus here is on the last 10 years.

Keywords

Gramain Ancient Evaporite Fluid Inclusions Geomicrobiological Studies Halophilic Archaea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adamski JC, Roberts JA, Goldstein RH (2006) Entrapment of bacteria in fluid inclusions in laboratory-grown halite. Astrobiology 6:552–562CrossRefGoogle Scholar
  2. Attia OE, Lowenstein TK, Wali AMA (1995) Middle Miocene gypsum, Gulf of Suez: marine or nonmarine? J Sed Res A 65:614–626Google Scholar
  3. Benison KC, Goldstein RH (1999) Permian paleoclimate data from fluid inclusions in halite. Chem Geol 154:113–132CrossRefGoogle Scholar
  4. Benison KC, Jagniecki EA, Edwards TB, Mormile MR, Storrie-Lombardi MC (2008) “Hairy Blobs”: Microbial suspects preserved in modern and ancient extremely acid lake evaporites. Astrobiology 8:807–821CrossRefGoogle Scholar
  5. Brennan ST, Lowenstein TK, Horita J (2004) Seawater chemistry and the advent of biocalcification. Geology 32:473–476CrossRefGoogle Scholar
  6. Burruss RC (2003) Chapter 11. Raman spectroscopy of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid Inclusions: analysis and interpretation. Mineral Assoc Canada, Short Course 32:279–289Google Scholar
  7. Casas E, Lowenstein TK (1989) Diagenesis of saline pan halite: Comparison of petrographic features of modern, Quaternary and Permian halites. J Sedim Petrol 59:724–739Google Scholar
  8. DeGelder J, DeGussem K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38(9):1133–1147CrossRefGoogle Scholar
  9. Eugster HP, Hardie LA (1978) Saline Lakes. In: Lerman A (ed) Lakes chemistry, geology, physics. Springer, New York, p 237–293Google Scholar
  10. Fendrihan S, Stan-Lotter H (2004) Survival of halobacteria in fluid inclusions as a model of possible biotic survival in Martian halite. In: Teodorescu H, Griebel H (ed) Mars and planetary science and technology. Performantica, Iasi, p 9–18Google Scholar
  11. Fendrihan S, Legat A, Pfaffenhuemer M, Gruber C, Weidler G, Gerbl F, Stan-Lotter H (2006) Extremely halophilic archaea and the issue of long-term microbial survival. Rev Environ Sci Biotechnol 5:203–218CrossRefGoogle Scholar
  12. Fendrihan S, Musso M, Stan-Lotter H (2009) Raman spectroscopy as a potential method for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples. J Raman Spectrosc 40(12):1996–2003CrossRefGoogle Scholar
  13. Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432–436CrossRefGoogle Scholar
  14. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals, Society for Sedimentary Geology (SEPM) Short Course 31. Tulsa, Oklahoma, p 199Google Scholar
  15. Gramain A, Chong Diaz G, Demergasso C, Lowenstein TK, McGenity TJ (2011) Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). Environ Microbiol 13:2105–2121CrossRefGoogle Scholar
  16. Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287CrossRefGoogle Scholar
  17. Griffith JD, Willcox S, Powers DW, Nelson R, Baxter BK (2008) Discovery of abundant cellulose microfibers encased in 250 Ma Permian halite: a macromolecular target in the search for life on other planets. Astrobiology 8:215–228CrossRefGoogle Scholar
  18. Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse H-J, Stan-Lotter H (2004) Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 8:431–439Google Scholar
  19. Hardie LA, Eugster HP (1970) The evolution of closed-basin brines. Mineral Soc Am Spec Paper 3:273–290Google Scholar
  20. Hardie LA, Lowenstein TK, Spencer RJ (1985) The problem of distinguishing between primary and secondary features in evaporites. Sixth International Symposium on Salt 1:11–39Google Scholar
  21. Heraud P, Beardall J, McNaughton D, Wood BR (2007) In vivo prediction of the nutrient status of individual micoalgal cells using Raman microspectroscopy. FEMS Microbiol Lett 275:24–30CrossRefGoogle Scholar
  22. Horita J, Zimmermann H, Holland HD (2002) The chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim Cosmochim Acta 66:3733–3756CrossRefGoogle Scholar
  23. Jones BF, Deocampo DM (2004) Geochemistry of saline lakes. Treatise on Geochemistry 5:393–424Google Scholar
  24. Kjelleberg S, Humphrey BA, Marshall KC (1983) Initial phases of starvation and activity of bacteria at surfaces. Appl Environ Microbiol 46:978–984PubMedPubMedCentralGoogle Scholar
  25. Kovalevych VM, Peryt TM, Petrichenko OI (1998) Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. J Geol 106:695–712CrossRefGoogle Scholar
  26. Lowenstein TK, Hardie LA (1985) Criteria for the recognition of salt-pan evaporites. Sedimentology 32:627–644CrossRefGoogle Scholar
  27. Lowenstein TK, Spencer RJ (1990) Syndepositional origin of potash evaporites: petrographic and fluid inclusion evidence. Am Jour Sci 290:1–42CrossRefGoogle Scholar
  28. Lowenstein TK, Li J, Brown CB (1998) Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA. Chem Geol 150:223–245CrossRefGoogle Scholar
  29. Lowenstein TK, Li J, Brown C, Roberts SM, Ku T-L, Luo S, Yang W (1999) 200 k.y. paleoclimate record from Death Valley salt core. Geology 27:3–6CrossRefGoogle Scholar
  30. Lowenstein TK, Brennan ST (2001) Fluid inclusions in paleolimnological studies of chemical sediments. In: Last WM, Smol JP (ed) Tracking environmental change using lake sediments: physical and geochemical methods, vol 2. Kluwer Academic, Dordrecht, p 189–216Google Scholar
  31. Lowenstein TK, Timofeeff MN, Brennan ST, Hardie LA, Demicco RV (2001) Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions in salt deposits. Science 294:1086–1088CrossRefGoogle Scholar
  32. Lowenstein TK, Timofeeff MN, Kovalevych VM, Horita J (2005) The major-ion composition of Permian seawater. Geochim Cosmochim Acta 69:1701–1719CrossRefGoogle Scholar
  33. Lowenstein TK, Schubert BA, Timofeeff MN (2011) Microbial communities in fluid inclusions and long-term survival in halite. GSA TODAY 21(1):4–9CrossRefGoogle Scholar
  34. McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250CrossRefGoogle Scholar
  35. Morita RY (1982) Starvation-survival of heterotrophs in the marine environment. Adv Microb Ecol 6:171–198CrossRefGoogle Scholar
  36. Morita RY (1997) Bacteria in oligotrophic environments: starvation-survival lifestyle. Chapman and Hall, New York, p 529Google Scholar
  37. Mormile MR, Biesen MA, Gutierrez MC, Ventosa A, Pavlovich JB, Onstott TC, Fredrickson JK (2003) Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ Microbiol 5:1094–1102CrossRefGoogle Scholar
  38. Mudalige A, Pemberton JE (2007) Raman spectroscopy of glycerol/D2O solutions. Vib Spectrosc 45:27–35CrossRefGoogle Scholar
  39. Novitsky JA, Morita RY (1976) Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl Environ Microbiol 32:617–622PubMedPubMedCentralGoogle Scholar
  40. Panieri G, Lugli S, Manzi V, Palinska KA, Roveri M (2008) Microbial communities in Messinian evaporite deposits of the Vena de Gesso (northern Apennines, Italy). Stratigraphy 5:343–352Google Scholar
  41. Panieri G, Lugli S, Manzi V, Roveri M, Schreiber BC, Palinska KA (2010) Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. Geobiology 8:101–111CrossRefGoogle Scholar
  42. Park JS, Vreeland RH, Cho BC, Lowenstein TK, Timofeeff MN, Rosenzweig WD (2009) Haloarchaeal diversity at 23, 121, and 419 MYA salts. Geobiology 7:515–523CrossRefGoogle Scholar
  43. Petrichenko OI, Peryt TM, Poberegsky AV (1997) Peculiarities of gypsum sedimentation in the Middle Miocene Badenian evaporite basin of Carpathian Foredeep. Slovak Geol Mag 3:91–104Google Scholar
  44. Petry R, Schmitt M, Popp J (2003) Raman spectroscopy—a prospective tool in the life sciences. ChemPhysChem 4(1):14–30CrossRefGoogle Scholar
  45. Radax C, Gruber C, Stan-Lotter H (2001) Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt. Extremophiles 5:221–228CrossRefGoogle Scholar
  46. Roberts SM, Spencer RJ (1995) Paleotemperatures preserved in fluid inclusions in halite. Geochim Cosmochim Acta 59:3929–3942CrossRefGoogle Scholar
  47. Roedder E (1984) The fluids in salt. Am Mineral 69:413–439Google Scholar
  48. Rosenzweig WD, Peterson J, Woish J, Vreeland RH (2000) Development of a protocol to retrieve microorganisms from ancient salt crystals. Geomicrobiol J 17:185–192CrossRefGoogle Scholar
  49. Sabouraud-Rosset C (1969) Characteres morphologiques des cavites primaires des monocristaux, sur l’example du gypse de synthese. Academie des Sciences (Paris). Comptes Rendus 268(Serie D):749–751Google Scholar
  50. Sabouraud-Rosset C (1972) Microcryoscopie des inclusions liquides du gypse et salinite des milieux generateurs. Rev Geogr Phys Geol Dyn 14:133–144Google Scholar
  51. Sabouraud-Rosset C (1974) Determination par activation neutronique des rapports Cl/Br des inclusions fluides de divers gypses. Correlation avec les donnees de la microcryoscopie et interpretations genetiques. Sedimentology 21:415–431CrossRefGoogle Scholar
  52. Sabouraud-Rosset C (1976) Les conditions de genese de certaines formes de cavites intracristallines eclairees par la methode experimentale. Bull Soc France Mineral Cristallogr 99:74–77Google Scholar
  53. Sankaranarayanan K, Timofeeff MN, Spathis R, Lowenstein TK, Lum JK (2011) Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction. PLoS ONE 6(6):e20683. doi:10.1371/journal.pone.0020683CrossRefGoogle Scholar
  54. Satterfield CL, Lowenstein TK, Vreeland RH, Rosenzweig WD, Powers DW (2005a) New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal. Geology 33:265–268CrossRefGoogle Scholar
  55. Satterfield CL, Lowenstein TK, Vreeland RH, Rosenzweig WD (2005b) Paleobrine temperatures, chemistries, and paleoenvironments of Silurian Salina Formation F-1 Salt, Michigan Basin, U.S.A., from petrography and fluid Inclusions in halite. J Sediment Res 75:534–544CrossRefGoogle Scholar
  56. Schubert BA, Lowenstein TK, Timofeeff MN (2009a) Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 9:467–482CrossRefGoogle Scholar
  57. Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2009b) How do prokaryotes survive in fluid inclusions in halite for 30,000 years? Geology 37:1059–1062CrossRefGoogle Scholar
  58. Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2010a) Halophilic Archaea cultured from ancient halite, Death Valley, California. Environ Microbiol 12(2):440–454CrossRefGoogle Scholar
  59. Schubert BA, Timofeeff MN, Polle JE, Lowenstein TK (2010b) Dunaliella cells in fluid inclusions in halite: significance for long-term survival of prokaryotes. Geomicrobio J 27:61–75CrossRefGoogle Scholar
  60. Smoot JP, Lowenstein TK (1991) Depositional environments of non-marine evaporites. In Melvin JL (ed) Evaporites, petroleum and mineral Resources. Developments in sedimentology 50. Elsevier, Amsterdam, p 189–347CrossRefGoogle Scholar
  61. Stan-Lotter H, McGenity TJ, Legat A, Denner EBM, Glaser K, Stetter KO, Wanner G (1999) Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiology 145:3565–3574CrossRefGoogle Scholar
  62. Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814PubMedGoogle Scholar
  63. Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeocl Palaeoecol 144:3–19CrossRefGoogle Scholar
  64. Timofeeff MN, Lowenstein TK, Silva MAM, Harris NB (2006) Secular variations in the major-ion chemistry of seawater: evidence from fluid inclusions in Cretaceous halites. Geochim Cosmochim Acta 70:1977–1994CrossRefGoogle Scholar
  65. Vreeland RH, Powers DW (1999) Considerations for microbiological sampling of crystals from ancient salt formations. In: Oren A (ed) Microbiology and biogeochemistry of hypersaline environments. CRC, Boca Raton, FL, p 53–73Google Scholar
  66. Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900CrossRefGoogle Scholar
  67. Vreeland RH, Jones J, Monson A, Rosenzweig WD, Lowenstein TK, Timofeeff M, Satterfield C, Cho BC, Park JS, Wallace A, Grant WD (2007) Isolation of live Cretaceous (121-112 million years old) halophilic Archaea from primary salt crystals. Geomicrobiol J 24:275–282CrossRefGoogle Scholar
  68. Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am Mineral 78:533–557Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Geological Sciences and Environmental StudiesState University of New York at BinghamtonBinghamtonUSA

Personalised recommendations