Skip to main content

Frame-Based Interactive Simulation of Complex Deformable Objects

  • Chapter
  • First Online:
Deformation Models

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 7))

Abstract

We present a new type of deformable model which combines the realism of physically based continuum mechanics models and the usability of frame-based skinning methods, allowing the interactive simulation of objects with heterogeneous material properties and complex geometries. The degrees of freedom are coordinate frames. In contrast with traditional skinning, frame positions are not scripted but move in reaction to internal body forces. The deformation gradient and its derivatives are computed at each sample point of a deformed object and used in the equations of Lagrangian mechanics to achieve physical realism. We introduce novel material-aware shape functions in place of the traditional radial basis functions used in meshless frameworks, allowing coarse deformation functions to efficiently resolve non-uniform stiffnesses. Complex models can thus be simulated at high frame rates using a small number of control nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams B, Ovsjanikov M, Wand M, Seidel H-P, Guibas LJ (2008) Meshless modeling of deformable shapes and their motion. In: Symposium on computer animation, pp 77–86, 2008

    Google Scholar 

  2. Allard J, Cotin S, Faure F, Bensoussan P-J, Poyer F, Duriez C, Delingette H, Grisoni L (2007) SOFA–an open source framework for medical simulation. In: Medicine meets virtual reality, MMVR 15, pp 1–6, Long Beach, California, Etats-Unis, 2007

    Google Scholar 

  3. Allard J, Faure F, Courtecuisse H, Falipou F, Duriez C, Kry P (2010) Volume contact constraints at arbitrary resolution. ACM Trans Graph 29(3):205–223

    Google Scholar 

  4. An SS, Kim T, James DL (2008) Optimizing cubature for efficient integration of subspace deformations. ACM Trans Graph 27(5):1–10

    Article  Google Scholar 

  5. Baraff D, Witkin A (1998) Large steps in cloth simulation. SIGGRAPH Comput Graph 32:106–117

    Google Scholar 

  6. Barbič J, James DL (2005) Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans Graph (SIGGRAPH 2005) 24(3):982–990

    Google Scholar 

  7. Bathe K (1996) Finite element procedures. Prentice Hall, Englewood Cliffs

    Google Scholar 

  8. Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE TVCG 5:62–73

    Google Scholar 

  9. Debunne G, Desbrun M, Cani M-P, Barr A (2001) Dynamic real-time deformations using space and time adaptive sampling. In: SIGGRAPH, computer graphics, pp 31–36, 2001

    Google Scholar 

  10. Faure F, Gilles B, Bousquet G, Pai DK (2011) Sparse meshless models of complex deformable solids. ACM Trans Graph 30(4):73

    Google Scholar 

  11. Fries T-P, Matthies HG (2003) Classification and overview of meshfree methods. Technical report, TU Brunswick, Germany

    Google Scholar 

  12. Galoppo N, Otaduy MA, Moss W, Sewall J, Curtis S, Lin MC (2009) Controlling deformable material with dynamic morph targets. In: Proceedings of the ACM SIGGRAPH symposium on interactive 3D graphics and games, Feb 2009

    Google Scholar 

  13. Gilles B, Bousquet G, Faure F, Pai DK (2011) Frame-based elastic models. ACM Trans Graph 30(2):15

    Google Scholar 

  14. Gourret J-P, Thalmann NM, Thalmann D (1989) Simulation of object and human skin formations in a grasping task. SIGGRAPH Comput Graph 23(3):21–30

    Article  Google Scholar 

  15. Grinspun E, Krysl P, Schröder P (2002) Charms: a simple framework for adaptive simulation. In: SIGGRAPH computer graphics, pp 281–290, 2002

    Google Scholar 

  16. Gross M, Pfister H (2007) Point-based graphics. Morgan Kaufmann, San Francisco

    Google Scholar 

  17. Irving G, Teran J, Fedkiw R (2006) Tetrahedral and hexahedral invertible finite elements. Graph Models 68(2):66–89

    Article  MATH  Google Scholar 

  18. James DL, Pai DK (2003) Multiresolution green’s function methods for interactive simulation of large-scale elastostatic objects. ACM Trans Graph 22:47–82

    Article  Google Scholar 

  19. Kaufmann P, Martin S, Botsch M, Gross M (2008) Flexible simulation of deformable models using discontinuous Galerkin fem. In: Symposium on computer animation, 2008

    Google Scholar 

  20. Kavan L, Collins S, Zara J, O’Sullivan C (2007) Skinning with dual quaternions. In: Symposium on interactive 3D graphics and games, pp 39–46, 2007

    Google Scholar 

  21. Kavan L, Collins S, Zara J, O’Sullivan C (2008) Geometric skinning with approximate dual quaternion blending, vol 27. ACM Press, New York

    Google Scholar 

  22. Kim T, James DL (2009) Skipping steps in deformable simulation with online model reduction. ACM Trans Graph 28:123:1–123:9

    Google Scholar 

  23. Liu Y, Wang W, Lévy B, Sun F, Yan D-M, Yang C (2009) On centroidal voronoi tessellation–energy smoothness and fast computation. ACM Trans Graph 28:08

    Google Scholar 

  24. Magnenat-Thalmann N, Laperrière R, Thalmann D (1988) Joint dependent local deformations for hand animation and object grasping. In: Graphics interface, pp 26–33, 1988

    Google Scholar 

  25. Martin S, Kaufmann P, Botsch M, Wicke M, Gross M (2008) Polyhedral finite elements using harmonic basis functions. Comput Graph Forum 27(5):1521–1529

    Article  Google Scholar 

  26. Martin S, Kaufmann P, Botsch M, Grinspun E, Gross M (2010) Unified simulation of elastic rods, shells, and solids. SIGGRAPH Comput Graph 29(4):39

    Google Scholar 

  27. Müller M, Gross M (2004) Interactive virtual materials. In: Graphics interface, 2004

    Google Scholar 

  28. Müller M, Keiser R, Nealen A, Pauly M, Gross M, Alexa M (2004) Point based animation of elastic, plastic and melting objects. In: Symposium on computer animation, pp 141–151, 2004

    Google Scholar 

  29. Müller M, Heidelberger B, Teschner M, Gross M (2005) Meshless deformations based on shape matching. ACM Trans Graph 24(3):471–478

    Article  Google Scholar 

  30. Nadler B, Rubin MB (2003) A new 3-d finite element for nonlinear elasticity using the theory of a cosserat point. Int J Solids Struct 40:4585–4614

    Article  MATH  Google Scholar 

  31. Nealen A, Müller M, Keiser R, Boxerman E, Carlson M (2005) Physically based deformable models in computer graphics. Comput Graph Forum 25(4):809–836

    Article  Google Scholar 

  32. Nesme M, Kry P, Jerabkova L, Faure F (2009) Preserving topology and elasticity for embedded deformable models. In: SIGGRAPH computer graphics, 2009

    Google Scholar 

  33. O’Brien J, Hodgins J (1999) Graphical models and animation of brittle fracture. In: SIGGRAPH computer Graphics, pp 137–146, 1999

    Google Scholar 

  34. Pai DK (2002) Strands: interactive simulation of thin solids using Cosserat models computer graphics forum. Int J Eurograph Assoc 21(3):347–352

    Google Scholar 

  35. Platt SM, Badler NI (1981) Animating facial expressions. In: SIGGRAPH computer graphics, pp 245–252, 1981

    Google Scholar 

  36. Powell MJD (1990) The theory of radial basis function approximation. University numerical analysis report

    Google Scholar 

  37. Sifakis E (2007) Der KG, Fedkiw R (2007) Arbitrary cutting of deformable tetrahedralized objects. In: Symposium on computer animation, 2007

    Google Scholar 

  38. Terzopoulos D, Qin H (1994) Dynamic nurbs with geometric constraints for interactive sculpting. ACM Trans Graph 13(2):103–136

    Article  MATH  Google Scholar 

  39. Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. AMC SIGGRAPH Comput Graph 24(4):205–214

    Google Scholar 

  40. Teschner M, Heidelberger B, Muller M, Gross M (2004) A versatile and robust model for geometrically complex deformable solids. In: CGI, 2004

    Google Scholar 

  41. Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Florent Falipou, Michaël Adam, Laurence Boissieux, François Jourdes, Estelle Duveau and Lionel Revéret for models and data. This work is partly funded by European project PASSPORT for Liver Surgery (ICT-2007.5.3 223894) and French ANR project SoHuSim. Thanks to the support of the Canada Research Chairs Program, NSERC, CIHR, Human Frontier Science Program, and Peter Wall Institute for Advanced Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Gilles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gilles, B., Faure, F., Bousquet, G., Pai, D.K. (2013). Frame-Based Interactive Simulation of Complex Deformable Objects. In: González Hidalgo, M., Mir Torres, A., Varona Gómez, J. (eds) Deformation Models. Lecture Notes in Computational Vision and Biomechanics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5446-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5446-1_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5445-4

  • Online ISBN: 978-94-007-5446-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics