Advertisement

Evaluation of Mechanisms

  • Jadran Lenarčič
  • Tadej Bajd
  • Michael M. Stanišić
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 60)

Abstract

Among the various criteria used to represent and evaluate the functional properties of a mechanism we describe the reachable and the dexterous workspace expressed by their volume and compactness. We also described the kinematic flexibility associated with the number of inverse kinematics solutions, the manipulability and the kinematic index associated with the kinematic singularities. Attention is given to the associated computational aspects, in particular to the determination and visualization of robot workspaces, which usually requires an enormous number of numerical operations.

Keywords

Jacobian Matrix Inverse Kinematic Kinematic Equation Planar Mechanism Inverse Kinematic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.
    J. Angeles, Int. J. Robot. Res. 11(3), 196 (1992) CrossRefGoogle Scholar
  2. 12.
    M. Ceccarelli, A. Vinciguerra, Int. J. Robot. Res. 14(2), 152 (1995) zbMATHCrossRefGoogle Scholar
  3. 34.
    J. Kieffer, IEEE Trans. Robot. Autom. 10(1), 1 (1994) MathSciNetCrossRefGoogle Scholar
  4. 35.
    J. Kieffer, J. Lenarčič, in Proceedings 3rd International Symposium on Advances in Robot Kinematics, Ferrara, Italy (1992), pp. 65–72 Google Scholar
  5. 38.
    V.C. Klema, A.J. Laub, IEEE Trans. Autom. Control 25(2), 164 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 41.
    A. Kumar, K.J. Waldron, J. Mech. Des. 103, 665 (1981) CrossRefGoogle Scholar
  7. 47.
    J. Lenarčič, Lab. Robot. Autom. 6(6), 293 (1994) Google Scholar
  8. 53.
    J. Lenarčič, U. Stanič, U. Oblak, Robot. Comput.-Integr. Manuf. 5(2/3), 235 (1989) Google Scholar
  9. 54.
    J. Lenarčič, U. Stanič, P. Oblak, in Proceedings 23rd International Symposium on Industrial Robots, Barcelona, Spain (1992), pp. 277–282 Google Scholar
  10. 68.
    R.P. Paul, C.N. Stevenson, Int. J. Robot. Res. 2(1), 31 (1983) CrossRefGoogle Scholar
  11. 75.
    A. Ružič, in Proceedings 4th Workshop on Robotics in Alpe-Adria Region, Pörtschach, Austria (1995), pp. 59–62 Google Scholar
  12. 77.
    L. Sciavicco, B. Siciliano, Modeling and Control of Robot Manipulators, 2nd edn. (Springer, London, 2000) CrossRefGoogle Scholar
  13. 78.
    M.M. Stanišić, O. Duta, IEEE Trans. Robot. Autom. 6(5), 562 (1990) CrossRefGoogle Scholar
  14. 89.
    P. Wenger, J. El Omri, in Advances in Robot Kinematics and Computational Geometry, ed. by J. Lenarčič, B. Ravani (Kluwer Academic, Dordrecht, 1994), pp. 29–38 Google Scholar
  15. 92.
    T. Yoshikawa, Int. J. Robot. Res. 4(2), 3 (1985) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jadran Lenarčič
    • 1
  • Tadej Bajd
    • 2
  • Michael M. Stanišić
    • 3
  1. 1.J. Stefan InstituteLjubljana-Vic-RudnikSlovenia
  2. 2.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljana-Vic-RudnikSlovenia
  3. 3.Aerospace and Mechanical EngineeringNotre Dame UniversityNotre DameUSA

Personalised recommendations