Skip to main content

Defense Mechanisms Against Oxidative Stress in Coxiella burnetii: Adaptation to a Unique Intracellular Niche

  • Chapter
  • First Online:
Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium

Part of the book series: Advances in Experimental Medicine and Biology ((volume 984))

Abstract

Survival of intracellular pathogenic bacteria depends on the ability to resist host-mediated degradation and to generate a replicative niche within the host. Usually, after internalization by professional phagocytic cells, the bacteria containing vacuole or phagosome traffics through the endocytic pathway, progressively acidifies and develops into a degradative mature phagolysosome. In this environment bacteria are exposed to a wide variety of anti-microbial agents, such as defensins, proteases, and reactive oxygen species (ROS) and reactive nitrogen species (RNS). Most parasitizing bacteria have evolved strategies to interfere with this maturation process and to direct the development of an environment that supports survival and replication. C. burnetii also follows this paradigm, but directs the biogenesis of a unique parasitophorous vacuole (PV), which resembles, yet is distinct from a terminal phagolysosome. Within the environment of the PV, C. burnetii is exposed to varying levels of ROS and RNS, which represent the primary defense mechanism of the host cell against this invading microorganism. Major mediators for ROS and RNS are superoxide (O 2 ) and nitric oxide (NO*), generated by the cellular NADPH oxidase (phox) and inducible nitric oxide synthase (iNOS), respectively. C. burnetii employs several strategies to evade oxidative stress; on the host side (i) delaying phagolysosome fusion and (ii) inhibiting cellular NADPH oxidase. On the bacterial side, maintaining genome stability by (iii) evolving a preference for a low iron environment, (iv) expressing a minimal and likely crucial set of DNA repair genes and (v) detoxifying the PV by ROS and RNS degrading enzymes. Overall defense mechanisms in C. burnetii against oxidative and nitrosative stress and the regulation thereof are not fully defined and our knowledge is mainly based on genome sequence information. Comparison with E. coli as a model bacterium reveals that defense strategies of C. burnetii differ significantly and emphasize a highly adaptive evolution to this harsh and unique niche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamodt RM, Falnes PO, Johansen RF, Seeberg E, Bjoras M (2004) The Bacillus subtilis counterpart of the mammalian 3-methyladenine DNA glycosylase has hypoxanthine and 1, N6-ethenoadenine as preferred substrates. J Biol Chem 279:13601–13606

    PubMed  CAS  Google Scholar 

  • Akporiaye ET, Baca OG (1983) Superoxide anion production and superoxide dismutase and catalase activities in Coxiella burnetii. J Bacteriol 154:520–523

    PubMed  CAS  Google Scholar 

  • Akporiaye ET, Stefanovich D, Tsosie V, Baca G (1990) Coxiella burnetii fails to stimulate human neutrophil superoxide anion production. Acta Virol 34:64–70

    PubMed  CAS  Google Scholar 

  • Albakri QA, Stuehr DJ (1996) Intracellular assembly of inducible NO synthase is limited by nitric oxide-mediated changes in heme insertion and availability. J Biol Chem 271:5414–5421

    PubMed  CAS  Google Scholar 

  • Anderson AD, Kruszon-Moran D, Loftis AD, McQuillan G, Nicholson WL, Priestley RA, Candee AJ, Patterson NE, Massung RF (2009) Seroprevalence of Q fever in the United States, 2003–2004. Am J Trop Med Hyg 81:691–694

    PubMed  Google Scholar 

  • Baca OG, Paretsky D (1983) Q fever and Coxiella burnetii: a model for host-parasite interactions. Microbiol Rev 47:127–149

    PubMed  CAS  Google Scholar 

  • Baca OG, Roman MJ, Glew RH, Christner RF, Buhler JE, Aragon AS (1993) Acid phosphatase activity in Coxiella burnetii: a possible virulence factor. Infect Immun 61:4232–4239

    PubMed  CAS  Google Scholar 

  • Badwey JA, Curnutte JT, Robinson JM, Lazdins JK, Briggs RT, Karnovsky MJ, Karnovsky ML (1980) Comparative aspects of oxidative metabolism of neutrophils from human blood and guinea pig peritonea: magnitude of the respiratory burst, dependence upon stimulating agents, and localization of the oxidases. J Cell Physiol 105:541–545

    PubMed  CAS  Google Scholar 

  • Baek KJ, Thiel BA, Lucas S, Stuehr DJ (1993) Macrophage nitric oxide synthase subunits. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme. J Biol Chem 268:21120–21129

    PubMed  CAS  Google Scholar 

  • Baker LM, Raudonikiene A, Hoffman PS, Poole LB (2001) Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J Bacteriol 183:1961–1973

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay P, Steinman HM (1998) Legionella pneumophila catalase-peroxidases: cloning of the katB gene and studies of KatB function. J Bacteriol 180:5369–5374

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay P, Steinman HM (2000) Catalase-peroxidases of Legionella pneumophila: cloning of the katA gene and studies of KatA function. J Bacteriol 182:6679–6686

    PubMed  CAS  Google Scholar 

  • Battistoni A (2003) Role of prokaryotic Cu, Zn superoxide dismutase in pathogenesis. Biochem Soc Trans 31:1326–1329

    PubMed  CAS  Google Scholar 

  • Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A, Gilk SD, Williams KP, Sobral BW, Kupko JJ 3rd, Porcella SF, Samuel JE, Heinzen RA (2009) Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 77:642–656

    PubMed  CAS  Google Scholar 

  • Beron W, Gutierrez MG, Rabinovitch M, Colombo MI (2002) Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect Immun 70:5816–5821

    PubMed  CAS  Google Scholar 

  • Beyenbach KW, Wieczorek H (2006) The V-type H  +  ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589

    PubMed  CAS  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    PubMed  CAS  Google Scholar 

  • Boschi-Muller S, Olry A, Antoine M, Branlant G (2005) The enzymology and biochemistry of methionine sulfoxide reductases. Biochim Biophys Acta 1703:231–238

    PubMed  CAS  Google Scholar 

  • Brennan RE, Russell K, Zhang G, Samuel JE (2004) Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections. Infect Immun 72:6666–6675

    PubMed  CAS  Google Scholar 

  • Briggs HL, Pul N, Seshadri R, Wilson MJ, Tersteeg C, Russell-Lodrigue KE, Andoh M, Baumler AJ, Samuel JE (2008) A limited role for iron regulation in Coxiella burnetii pathogenesis. Infect Immun 76(5):2189–2201

    PubMed  CAS  Google Scholar 

  • Bylund J, Brown KL, Movitz C, Dahlgren C, Karlsson A (2010) Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for? Free Radic Biol Med 49(12):1834–1845

    PubMed  CAS  Google Scholar 

  • Cabusora L, Sutton E, Fulmer A, Forst CV (2005) Differential network expression during drug and stress response. Bioinformatics 21:2898–2905

    PubMed  CAS  Google Scholar 

  • Callahan LA, Nethery D, Stofan D, Dimarco A, Supinski G (2001) Free radical-induced contractile protein dysfunction in endotoxin-induced sepsis. Am J Respir Cell Mol Biol 24:210–217

    PubMed  CAS  Google Scholar 

  • Cantwell AM, Bubeck SS, Dube PH (2010) YopH inhibits early pro-inflammatory cytokine responses during plague pneumonia. BMC Immunol 11:29

    PubMed  Google Scholar 

  • Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461

    PubMed  CAS  Google Scholar 

  • Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    PubMed  CAS  Google Scholar 

  • Chen C, Banga S, Mertens K, Weber MM, Gorbaslieva I, Tan Y, Luo ZQ, Samuel JE (2010) Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci USA 107(50):21755–21760

    PubMed  CAS  Google Scholar 

  • Cirillo SL, Subbian S, Chen B, Weisbrod TR, Jacobs WR Jr, Cirillo JD (2009) Protection of Mycobacterium tuberculosis from reactive oxygen species conferred by the mel2 locus impacts persistence and dissemination. Infect Immun 77:2557–2567

    PubMed  CAS  Google Scholar 

  • Davis AS, Vergne I, Master SS, Kyei GB, Chua J, Deretic V (2007) Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes. PLoS Pathog 3:e186

    PubMed  Google Scholar 

  • de Jong MF, Sun YH, den Hartigh AB, van Dijl JM, Tsolis RM (2008) Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol 70:1378–1396

    PubMed  Google Scholar 

  • Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948

    PubMed  CAS  Google Scholar 

  • Ennis DG, Little JW, Mount DW (1993) Novel mechanism for UV sensitivity and apparent UV nonmutability of recA432 mutants: persistent LexA cleavage following SOS induction. J Bacteriol 175:7373–7382

    PubMed  CAS  Google Scholar 

  • Enserink M (2010) Infectious diseases. Questions abound in Q-fever explosion in the Netherlands. Science 327:266–267

    CAS  Google Scholar 

  • Fang FC, Degroote MA, Foster JW, Baumler AJ, Ochsner U, Testerman T, Bearson S, Giard J-C, Xu Y, Campbell G, Laessig T (1999) Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc Natl Acad Sci 96:7502–7507

    PubMed  CAS  Google Scholar 

  • Franzon VL, Arondel J, Sansonetti PJ (1990) Contribution of superoxide dismutase and catalase activities to Shigella flexneri pathogenesis. Infect Immun 58:529–535

    PubMed  CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. American Society of Microbiology Press, Washington, DC

    Google Scholar 

  • Fujikura Y, Kudlackova P, Vokurka M, Krijt J, Melkova Z (2009) The effect of nitric oxide on vaccinia virus-encoded ribonucleotide reductase. Nitric Oxide 20:114–121

    PubMed  CAS  Google Scholar 

  • Gort AS, Imlay JA (1998) Balance between endogenous superoxide stress and antioxidant defenses. J Bacteriol 180:1402–1410

    PubMed  CAS  Google Scholar 

  • Grzesiuk E, Gozdek A, Tudek B (2001) Contribution of E. coli AlkA, TagA glycosylases and UvrABC-excinuclease in MMS mutagenesis. Mutat Res 480–481:77–84

    PubMed  Google Scholar 

  • Gupta S, Chatterji D (2005) Stress responses in mycobacteria. IUBMB Life 57:149–159

    PubMed  CAS  Google Scholar 

  • Gutierrez MG, Vazquez CL, Munafo DB, Zoppino FC, Beron W, Rabinovitch M, Colombo MI (2005) Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol 7:981–993

    PubMed  CAS  Google Scholar 

  • Hackstadt T (1986) Antigenic variation in the phase I lipopolysaccharide of Coxiella burnetii isolates. Infect Immun 52:337–340

    PubMed  CAS  Google Scholar 

  • Hackstadt T, Williams JC (1981) Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci USA 78:3240–3244

    PubMed  CAS  Google Scholar 

  • Hassett DJ, Cohen MS (1989) Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. FASEB J 3:2574–2582

    PubMed  CAS  Google Scholar 

  • Heinzen RA, Frazier ME, Mallavia LP (1990) Nucleotide sequence of Coxiella burnetii superoxide dismutase. Nucleic Acids Res 18:6437

    PubMed  CAS  Google Scholar 

  • Heinzen RA, Frazier ME, Mallavia LP (1992) Coxiella burnetii superoxide dismutase gene: cloning, sequencing, and expression in Escherichia coli. Infect Immun 60:3814–3823

    PubMed  CAS  Google Scholar 

  • Heinzen RA, Scidmore MA, Rockey DD, Hackstadt T (1996) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect Immun 64:796–809

    PubMed  CAS  Google Scholar 

  • Hendrix LR, Samuel JE, Mallavia LP (1991) Differentiation of Coxiella burnetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. J Gen Microbiol 137:269–276

    PubMed  CAS  Google Scholar 

  • Hicks LD, Raghavan R, Battisti JM, Minnick MF (2010) A DNA-binding peroxiredoxin of Coxiella burnetii is involved in countering oxidative stress during exponential-phase growth. J Bacteriol 192:2077–2084

    PubMed  CAS  Google Scholar 

  • Hill J, Samuel JE (2010) Coxiella burnetii acid phosphatase: inhibiting the release of reactive oxygen intermediates in polymorphonuclear leukocytes. Infect Immun 79(1):414–420

    PubMed  Google Scholar 

  • Hillas PJ, del Alba FS, Oyarzabal J, Wilks A, Ortiz De Montellano PR (2000) The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. J Biol Chem 275:18801–18809

    PubMed  CAS  Google Scholar 

  • Hisert KB, Kirksey MA, Gomez JE, Sousa AO, Cox JS, Jacobs WR Jr, Nathan CF, McKinney JD (2004) Identification of Mycobacterium tuberculosis counterimmune (cim) mutants in immunodeficient mice by differential screening. Infect Immun 72:5315–5321

    PubMed  CAS  Google Scholar 

  • Howe D, Mallavia LP (1999) Coxiella burnetii infection increases transferrin receptors on J774A. 1 cells. Infect Immun 67:3236–3241

    PubMed  CAS  Google Scholar 

  • Howe D, Mallavia LP (2000) Coxiella burnetii exhibits morphological change and delays phagolysosomal fusion after internalization by J774A.1 cells. Infect Immun 68:3815–3821

    PubMed  CAS  Google Scholar 

  • Howe D, Barrows LF, Lindstrom NM, Heinzen RA (2002) Nitric oxide inhibits Coxiella burnetii replication and parasitophorous vacuole maturation. Infect Immun 70:5140–5147

    PubMed  CAS  Google Scholar 

  • Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283

    PubMed  CAS  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    PubMed  CAS  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309

    PubMed  CAS  Google Scholar 

  • Imlay JA, Chin SM, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642

    PubMed  CAS  Google Scholar 

  • Jones SA, Chowdhury FZ, Fabich AJ, Anderson A, Schreiner DM, House AL, Autieri SM, Leatham MP, Lins JJ, Jorgensen M, Cohen PS, Conway T (2007) Respiration of Escherichia coli in the mouse intestine. Infect Immun 75:4891–4899

    PubMed  CAS  Google Scholar 

  • Juedes MJ, Wogan GN (1996) Peroxynitrite-induced mutation spectra of pSP189 following replication in bacteria and in human cells. Mutat Res 349:51–61

    PubMed  Google Scholar 

  • Kana BD, Weinstein EA, Avarbock D, Dawes SS, Rubin H, Mizrahi V (2001) Characterization of the cydAB-encoded cytochrome bd oxidase from Mycobacterium smegmatis. J Bacteriol 183:7076–7086

    PubMed  CAS  Google Scholar 

  • Korshunov SS, Imlay JA (2002) A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram-negative bacteria. Mol Microbiol 43:95–106

    PubMed  CAS  Google Scholar 

  • Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465

    PubMed  CAS  Google Scholar 

  • Leblanc JJ, Davidson RJ, Hoffman PS (2006) Compensatory functions of two alkyl hydroperoxide reductases in the oxidative defense system of Legionella pneumophila. J Bacteriol 188:6235–6244

    PubMed  CAS  Google Scholar 

  • Leblanc JJ, Brassinga AK, Ewann F, Davidson RJ, Hoffman PS (2008) An ortholog of OxyR in Legionella pneumophila is expressed postexponentially and negatively regulates the alkyl hydroperoxide reductase (ahpC2D) operon. J Bacteriol 190:3444–3455

    PubMed  CAS  Google Scholar 

  • Li YP, Curley G, Lopez M, Chavez M, Glew R, Aragon A, Kumar H, Baca OG (1996) Protein-tyrosine phosphatase activity of Coxiella burnetii that inhibits human neutrophils. Acta Virol 40:263–272

    PubMed  CAS  Google Scholar 

  • Lindgren H, Stenmark S, Chen W, Tarnvik A, Sjostedt A (2004) Distinct roles of reactive nitrogen and oxygen species to control infection with the facultative intracellular bacterium Francisella tularensis. Infect Immun 72:7172–7182

    PubMed  CAS  Google Scholar 

  • Masse E, Salvail H, Desnoyers G, Arguin M (2007) Small RNAs controlling iron metabolism. Curr Opin Microbiol 10:140–145

    PubMed  CAS  Google Scholar 

  • Master SS, Springer B, Sander P, Boettger EC, Deretic V, Timmins GS (2002) Oxidative stress response genes in Mycobacterium tuberculosis: role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiology 148:3139–3144

    PubMed  CAS  Google Scholar 

  • Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12:518–553

    PubMed  CAS  Google Scholar 

  • Mayer B, Hemmens B (1997) Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 22:477–481

    PubMed  CAS  Google Scholar 

  • McCaul TF, Williams JC (1981) Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations. J Bacteriol 147:1063–1076

    PubMed  CAS  Google Scholar 

  • Mertens K, Lantsheer L, Ennis DG, Samuel JE (2008) Constitutive SOS expression and damage-inducible AddAB-mediated recombinational repair systems for Coxiella burnetii as potential adaptations for survival within macrophages. Mol Microbiol 69:1411–1426

    PubMed  CAS  Google Scholar 

  • Mongkolsuk S, Helmann JD (2002) Regulation of inducible peroxide stress responses. Mol Microbiol 45:9–15

    PubMed  CAS  Google Scholar 

  • Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848

    PubMed  CAS  Google Scholar 

  • Ohno Y, Hirai K, Kanoh T, Uchino H, Ogawa K (1982) Subcellular localization of H2O2 production in human neutrophils stimulated with particles and an effect of cytochalasin-B on the cells. Blood 60:253–260

    PubMed  CAS  Google Scholar 

  • Omsland A, Cockrell DC, Fischer ER, Heinzen RA (2008) Sustained axenic metabolic activity by the obligate intracellular bacterium Coxiella burnetii. J Bacteriol 190:3203–3212

    PubMed  CAS  Google Scholar 

  • Omsland A, Cockrell DC, Howe D, Fischer ER, Virtaneva K, Sturdevant DE, Porcella SF, Heinzen RA (2009) Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci USA 106:4430–4434

    PubMed  CAS  Google Scholar 

  • Ouellet H, Ouellet Y, Richard C, Labarre M, Wittenberg B, Wittenberg J, Guertin M (2002) Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc Natl Acad Sci USA 99:5902–5907

    PubMed  CAS  Google Scholar 

  • Pagan-Ramos E, Master SS, Pritchett CL, Reimschuessel R, Trucksis M, Timmins GS, Deretic V (2006) Molecular and physiological effects of mycobacterial oxyR inactivation. J Bacteriol 188:2674–2680

    PubMed  CAS  Google Scholar 

  • Park SH, Lee HW, Cao W (2010) Screening of nitrosative stress resistance genes in Coxiella burnetii: involvement of nucleotide excision repair. Microb Pathog 49:323–329

    PubMed  CAS  Google Scholar 

  • Pollock JD, Williams DA, Gifford MA, Li LL, Du X, Fisherman J, Orkin SH, Doerschuk CM, Dinauer MC (1995) Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 9:202–209

    PubMed  CAS  Google Scholar 

  • Poole LB (2005) Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys 433:240–254

    PubMed  CAS  Google Scholar 

  • Posey JE, Gherardini FC (2000) Lack of a role for iron in the Lyme disease pathogen. Science 288:1651–1653

    PubMed  CAS  Google Scholar 

  • Qiu H, Kuolee R, Harris G, Chen W (2009) Role of NADPH phagocyte oxidase in host defense against acute respiratory Acinetobacter baumannii infection in mice. Infect Immun 77:1015–1021

    PubMed  CAS  Google Scholar 

  • Rosner JL, Storz G (1997) Regulation of bacterial responses to oxidative stress. Curr Top Cell Regul 35:163–177

    PubMed  CAS  Google Scholar 

  • Roux CM, Booth NJ, Bellaire BH, Gee JM, Roop RM 2nd, Kovach ME, Tsolis RM, Elzer PH, Ennis DG (2006) RecA and RadA proteins of Brucella abortus do not perform overlapping protective DNA repair functions following oxidative burst. J Bacteriol 188:5187–5195

    PubMed  CAS  Google Scholar 

  • Sadosky AB, Wilson JW, Steinman HM, Shuman HA (1994) The iron superoxide dismutase of Legionella pneumophila is essential for viability. J Bacteriol 176:3790–3799

    PubMed  CAS  Google Scholar 

  • Saha AK, Dowling JN, Lamarco KL, Das S, Remaley AT, Olomu N, Pope MT, Glew RH (1985) Properties of an acid phosphatase from Legionella micdadei which blocks superoxide anion production by human neutrophils. Arch Biochem Biophys 243:150–160

    PubMed  CAS  Google Scholar 

  • Saha AK, Dowling JN, Pasculle AW, Glew RH (1988) Legionella micdadei phosphatase catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate in human neutrophils. Arch Biochem Biophys 265:94–104

    PubMed  CAS  Google Scholar 

  • Samuel JE, Frazier ME, Mallavia LP (1985) Correlation of plasmid type and disease caused by Coxiella burnetii. Infect Immun 49:775–779

    PubMed  CAS  Google Scholar 

  • Sauer JD, Shannon JG, Howe D, Hayes SF, Swanson MS, Heinzen RA (2005) Specificity of Legionella pneumophila and Coxiella burnetii vacuoles and versatility of Legionella pneumophila revealed by coinfection. Infect Immun 73:4494–4504

    PubMed  CAS  Google Scholar 

  • Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626

    PubMed  CAS  Google Scholar 

  • Schellhorn HE (1995) Regulation of hydroperoxidase (catalase) expression in Escherichia coli. FEMS Microbiol Lett 131:113–119

    PubMed  CAS  Google Scholar 

  • Sekeyova Z, Roux V, Raoult D (1999) Intraspecies diversity of Coxiella burnetii as revealed by com1 and mucZ sequence comparison. FEMS Microbiol Lett 180:61–67

    PubMed  CAS  Google Scholar 

  • Sexton JA, Vogel JP (2002) Type IVB secretion by intracellular pathogens. Traffic 3:178–185

    PubMed  CAS  Google Scholar 

  • Siemsen DW, Kirpotina LN, Jutila MA, Quinn MT (2009) Inhibition of the human neutrophil NADPH oxidase by Coxiella burnetii. Microbes Infect 11:671–679

    PubMed  CAS  Google Scholar 

  • St John G, Steinman HM (1996) Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary-phase survival. J Bacteriol 178:1578–1584

    Google Scholar 

  • Stein A, Saunders NA, Taylor AG, Raoult D (1993) Phylogenic homogeneity of Coxiella burnetii strains as determinated by 16S ribosomal RNA sequencing. FEMS Microbiol Lett 113:339–344

    PubMed  CAS  Google Scholar 

  • Stenger S, Donhauser N, Thuring H, Rollinghoff M, Bogdan C (1996) Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J Exp Med 183:1501–1514

    PubMed  CAS  Google Scholar 

  • Stoenner HG, Lackman DB (1960) The biologic properties of Coxiella burnetii isolated from rodents collected in Utah. Am J Hyg 71:45–51

    PubMed  CAS  Google Scholar 

  • Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194

    PubMed  CAS  Google Scholar 

  • Tanaka K, Handel K, Loewen PC, Takahashi H (1997) Identification and analysis of the rpoS-dependent promoter of katE, encoding catalase HPII in Escherichia coli. Biochim Biophys Acta 1352:161–166

    PubMed  CAS  Google Scholar 

  • Tautz L, Bruckner S, Sareth S, Alonso A, Bogetz J, Bottini N, Pellecchia M, Mustelin T (2005) Inhibition of Yersinia tyrosine phosphatase by furanyl salicylate compounds. J Biol Chem 280:9400–9408

    PubMed  CAS  Google Scholar 

  • Thiemermann C, Vane J (1990) Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol 182:591–595

    PubMed  CAS  Google Scholar 

  • Tlili A, Dupre-Crochet S, Erard M, Nubetae O (2011) Kinetic analysis of phagosomal production of reactive oxygen species. Free Radic Biol Med 50(3):438–447

    PubMed  CAS  Google Scholar 

  • Touati D (2000) Iron and oxidative stress in bacteria. Arch Biochem Biophys 373:1–6

    PubMed  CAS  Google Scholar 

  • Vazquez-Torres A, Xu Y, Jones-Carson J, Holden DW, Lucia SM, Dinauer MC, Mastroeni P, Fang FC (2000) Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:1655–1658

    PubMed  CAS  Google Scholar 

  • Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, Taylor K, Klein E, Manjunatha U, Gonzales J, Lee EG, Park SK, Raleigh JA, Cho SN, McMurray DN, Flynn JL, Barry CE 3rd (2008) Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76:2333–2340

    PubMed  CAS  Google Scholar 

  • Vila-Del Sol V, Diaz-Munoz MD, Fresno M (2007) Requirement of tumor necrosis factor alpha and nuclear factor-kappaB in the induction by IFN-gamma of inducible nitric oxide synthase in macrophages. J Leukoc Biol 81:272–283

    PubMed  CAS  Google Scholar 

  • Voth DE, Heinzen RA (2009) Coxiella type IV secretion and cellular microbiology. Curr Opin Microbiol 12(1):74–80

    PubMed  CAS  Google Scholar 

  • Wang G, Alamuri P, Humayun MZ, Taylor DE, Maier RJ (2005) The Helicobacter pylori MutS protein confers protection from oxidative DNA damage. Mol Microbiol 58:166–176

    PubMed  CAS  Google Scholar 

  • Wang G, Alamuri P, Maier RJ (2006) The diverse antioxidant systems of Helicobacter pylori. Mol Microbiol 61:847–860

    PubMed  CAS  Google Scholar 

  • Webb JL, Harvey MW, Holden DW, Evans TJ (2001) Macrophage nitric oxide synthase associates with cortical actin but is not recruited to phagosomes. Infect Immun 69:6391–6400

    PubMed  CAS  Google Scholar 

  • Weisburg WG, Dobson ME, Samuel JE, Dasch GA, Mallavia LP, Baca O, Mandelco L, Sechrest JE, Weiss E, Woese CR (1989) Phylogenetic diversity of the Rickettsiae. J Bacteriol 171:4202–4206

    PubMed  CAS  Google Scholar 

  • Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS et al (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254:1001–1003

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Samuel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mertens, K., Samuel, J.E. (2012). Defense Mechanisms Against Oxidative Stress in Coxiella burnetii: Adaptation to a Unique Intracellular Niche. In: Toman, R., Heinzen, R., Samuel, J., Mege, JL. (eds) Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium. Advances in Experimental Medicine and Biology, vol 984. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4315-1_3

Download citation

Publish with us

Policies and ethics