Skip to main content

Midkine in Glioblastoma with the Modulator Role Switching Autophagy to Cell Death or Cell Survival

  • Chapter
  • First Online:
Midkine: From Embryogenesis to Pathogenesis and Therapy
  • 432 Accesses

Abstract

Glioblastoma (GBM) is the most common and lethal brain tumor. Characterization of GBM with poor prognosis although new treatment modalities hasn’t been changed up to date. New molecular targets in order to overcome resistance and recurrence are needed. Autophagy, a self-catabolic process, has two converse role in tumorigenesis, acting both as a tumor suppressor and a protector of cancer cell survival, tumor dormancy, progression, and therapeutic resistance. Autophagy with its dual role become target of cancer therapy. Midkine (MK), a growth factor with cytokine activity, is expressed highly during embryogenesis, but interestingly, MK is not detectable in healthy adults and only re-appears in the body as a part of the pathogenesis of diseases such as cancer. MK promotes proliferation, migration, anti-apoptotic manner, mitogenesis, transforming, and angiogenesis in various cells. In the central nervous system. High MK expression correlates with the progression of human astrocytomas, MK mRNA and protein expression levels were higher in high-grade astrocytomas as GBMs than in low-grade astrocytomas. MK correlates with the poor prognosis of GBM. This review is focused on the relationship between MK and autophagy in GBM and GBM treatment and pro­mising usage of MK in order to switch autophagy to cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholas MK, Lukas RV, Chmura S et al (2011) Molecular heterogeneity in glioblastoma: therapeutic opportunities and challenges. Semin Oncol 38:243–253

    Article  PubMed  CAS  Google Scholar 

  2. Wilson EN, Bristol ML, Di X et al (2011) A switch between cytoprotective and cytotoxic autophagy in the radiosensitization of breast tumor cells by chloroquine and vitamin D. Horm Cancer 2:272–285

    Article  PubMed  CAS  Google Scholar 

  3. Meschini S, Condello M, Lista P et al (2011) Autophagy: molecular mechanisms and their implications for anticancer therapies. Curr Cancer Drug Target 11:357–379

    Article  CAS  Google Scholar 

  4. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335

    Article  PubMed  CAS  Google Scholar 

  5. Ravikumar B, Sarkar S, Davies JE et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435

    Article  PubMed  CAS  Google Scholar 

  6. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  PubMed  CAS  Google Scholar 

  7. Aita VM, Liang XH, Murty VV et al (1999) Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59:59–65

    Article  PubMed  CAS  Google Scholar 

  8. Kang R, Zeh HJ, Lotze MT et al (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580

    Article  PubMed  CAS  Google Scholar 

  9. Iqbal J, Kucuk C, Deleeuw RJ et al (2009) Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia 23:1139–1151

    Article  PubMed  CAS  Google Scholar 

  10. Liang C, Feng P, Ku B et al (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8:688–699

    Article  PubMed  CAS  Google Scholar 

  11. Kim MS, Jeong EG, Ahn CH et al (2008) Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Hum Pathol 39:1059–1063

    Article  PubMed  CAS  Google Scholar 

  12. Chen N, Debnath J (2010) Autophagy and tumorigenesis. FEBS Lett 584:1427–1435

    Article  PubMed  CAS  Google Scholar 

  13. Mathew R, Kongara S, Beaudoin B et al (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21:1367–1381

    Article  PubMed  CAS  Google Scholar 

  14. Steeves MA, Dorsey FC, Cleveland JL (2010) Targeting the autophagy pathway for cancer chemoprevention. Curr Opin Cell Biol 22:218–225

    Article  PubMed  CAS  Google Scholar 

  15. Sasaki M, Miyakoshi M, Sato Y et al (2010) Autophagy mediates the process of cellular senescence characterizing bile duct damages in primary biliary cirrhosis. Lab Invest 90:835–843

    Article  PubMed  CAS  Google Scholar 

  16. Eskelinen EL (2011) The dual role of autophagy in cancer. Curr Opin Pharmacol 11:294–300

    Article  PubMed  CAS  Google Scholar 

  17. Coates JM, Galante JM, Bold RJ (2010) Cancer therapy beyond apoptosis: autophagy and anoikis as mechanisms of cell death. J Surg Res 164:301–308

    Article  PubMed  Google Scholar 

  18. Zhu WL, Hossain MS, Guo DY et al (2011) A role for the Rac3 GTPase in autophagy regulation. J Biol Chem 286:35291–35298

    Article  PubMed  CAS  Google Scholar 

  19. Furnari FB, Fenton T, Bachoo RM et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  PubMed  CAS  Google Scholar 

  20. Quant EC, Drappatz J, Wen PY et al (2010) Recurrent high-grade glioma. Curr Treat Option Neurol 12:321–333

    Article  Google Scholar 

  21. Krakstad C, Chekenya M (2010) Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics. Mol Cancer 9:135

    Article  PubMed  CAS  Google Scholar 

  22. Rauvala H, Peng HB (1997) HB-GAM (heparin-binding growth-associated molecule) and heparin-type glycans in the development and plasticity of neuron-target contacts. Prog Neurobiol 52:127–144

    Article  PubMed  CAS  Google Scholar 

  23. Sato W, Kadomatsu K, Yuzawa Y et al (2001) Midkine is involved in neutrophil infiltration into the tubulointerstitium in ischemic renal injury. J Immunol 167:3463–3469

    PubMed  CAS  Google Scholar 

  24. Fabri L, Maruta H, Muramatsu H et al (1993) Structural characterisation of native and recombinant forms of the neurotrophic cytokine MK. J Chromatogr 646:213–225

    Article  PubMed  CAS  Google Scholar 

  25. Muramatsu H, Inui T, Kimura T et al (1994) Localization of heparin-binding, neurite outgrowth and antigenic regions in midkine molecule. Biochem Biophys Res Commun 203:1131–1139

    Article  PubMed  CAS  Google Scholar 

  26. Kilpelainen I, Kaksonen M, Kinnunen T et al (2000) Heparin-binding growth-associated molecule contains two heparin-binding beta-sheet domains that are homologous to the thrombospondin type I repeat. J Biol Chem 275:13564–13570

    Article  PubMed  CAS  Google Scholar 

  27. Iwasaki W, Nagata K, Hatanaka H et al (1997) Solution structure of midkine, a new heparin-binding growth factor. EMBO J 16:6936–6946

    Article  PubMed  CAS  Google Scholar 

  28. Akhter S, Ichihara-Tanaka K, Kojima S et al (1998) Clusters of basic amino acids in midkine: roles in neurite-promoting activity and plasminogen activator-enhancing activity. J Biochem 123:1127–1136

    Article  PubMed  CAS  Google Scholar 

  29. Kojima S, Inui T, Muramatsu H et al (1997) Dimerization of midkine by tissue transglutaminase and its functional implication. J Biol Chem 272:9410–9416

    Article  PubMed  CAS  Google Scholar 

  30. Takei Y, Kadomatsu K, Matsuo S et al (2001) Antisense oligodeoxynucleotide targeted to Midkine, a heparin-binding growth factor, suppresses tumorigenicity of mouse rectal carcinoma cells. Cancer Res 61:8486–8491

    PubMed  CAS  Google Scholar 

  31. Muramatsu T (2010) Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proc Jpn Acad Ser B Phys Biol Sci 86:410–425

    Article  PubMed  CAS  Google Scholar 

  32. Muramatsu H, Zou P, Kurosawa N et al (2006) Female infertility in mice deficient in midkine and pleiotrophin, which form a distinct family of growth factors. Genes Cells 11:1405–1417

    Article  PubMed  CAS  Google Scholar 

  33. Maeda N, Ichihara-Tanaka K, Kimura T et al (1999) A receptor-like protein-tyrosine phosphatase PTPz/ RPTPb binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPz. J Biol Chem 274:12474–12479

    Article  PubMed  CAS  Google Scholar 

  34. Qin Li L, Lian Huang H, Liang Ping J et al (2011) Expression of midkine and endoglin in breast carcinomas with different immunohistochemical profiles. APMIS 119:103–110

    Article  PubMed  Google Scholar 

  35. Dai LC (2009) Midkine translocated to nucleoli and involved in carcinogenesis. World J Gastroenterol 15:412–416

    Article  PubMed  CAS  Google Scholar 

  36. Nobata S, Shinozawa T, Sakanishi A (2005) Truncated midkine induces transformation of cultured cells and short latency of tumorigenesis in nude mice. Cancer Lett 219:83–89

    Article  PubMed  CAS  Google Scholar 

  37. Gustavsson H, Jennbacken K, Welén K et al (2008) Altered expression of genes regulating angiogenesis in experimental androgen-independent prostate cancer. Prostate 68:161–170

    Article  PubMed  CAS  Google Scholar 

  38. Maruyama K, Muramatsu H, Ishiguro N et al (2004) Midkine, a heparin binding growth factor, is fundamentally involved in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 50:1420–1429

    Article  PubMed  CAS  Google Scholar 

  39. Wang J, Takeuchi H, Sonobe Y et al (2008) Inhibition of midkine alleviates experimental autoimmune encephalomyelitis through the expansion of regulatory T cell population. Proc Natl Acad Sci USA 105:3915–3920

    Article  PubMed  CAS  Google Scholar 

  40. Kadomatsu K (2010) Midkine regulation of the renin-angiotensin system. Curr Hypertens Rep 12:74–79

    Article  PubMed  CAS  Google Scholar 

  41. Kemik O, Sumer A, Kemik AS et al (2010) The relationship among acute-phase response proteins, cytokines and hormones in cachectic patients with colon cancer. World J Surg Oncol 8:85

    Article  PubMed  Google Scholar 

  42. Lucas S, Henze G, Schnabel D et al (2010) Serum levels of Midkine in children and adolescents without malignant disease. Pediatr Int 52:75–79

    Article  PubMed  CAS  Google Scholar 

  43. Muramatsu H, Zou K, Sakaguchi N et al (2000) LDL receptor related protein as a component of the midkine receptor. Biochem Biophys Res Commun 270:936–941

    Article  PubMed  CAS  Google Scholar 

  44. Muramatsu H, Zou P, Suzuki H et al (2004) a4b1- and a6b1-integrins are functional receptors for midkine, a heparin-binding growth factor. J Cell Sci 117:5405–5415

    Article  PubMed  CAS  Google Scholar 

  45. Ohuchida T, Okamoto K, Akahane K et al (2004) Midkine protects hepatocellular carcinoma cells against TRAILmediated apoptosis through down-regulation of caspase-3 activity. Cancer 100:2430–2436

    Article  PubMed  CAS  Google Scholar 

  46. Huang Y, Sook-Kim M, Ratovitski E (2008) Midkine promotes tetraspanin-integrin interaction and induces FAK-Stat1a pathway contributing to migration/invasiveness of human head and neck squamous cell carcinoma cells. Biochem Biophys Res Commun 377:474–478

    Article  PubMed  CAS  Google Scholar 

  47. Cernkovich ER, Deng J, Hua K et al (2007) Midkine is an autocrine activator of signal transducer and activator of transcription 3 in 3T3-L1 cells. Endocrinology 148:1598–1604

    Article  PubMed  CAS  Google Scholar 

  48. Stoica GE, Kuo A, Powers C et al (2002) Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem 277:35990–35998

    Article  PubMed  CAS  Google Scholar 

  49. Hussain MM, Strickland DK, Bakillah A (1999) The mammalian low-density lipoprotein receptor family. Annu Rev Nutr 19:141–172

    Article  PubMed  CAS  Google Scholar 

  50. Shibata Y, Muramatsu T, Hirai M et al (2002) Nuclear targeting by the growth factor midkine. Mol Cell Biol 22:6788–6796

    Article  PubMed  CAS  Google Scholar 

  51. Owada K, Sanjo N, Kobayashi T et al (1999) Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J Neurochem 73:2084–2092

    PubMed  CAS  Google Scholar 

  52. Satoh H, Muramatsu G, Moretto T et al (1993) Midkine that promotes survival of fetal human neurons is produced by fetal human astrocytes in culture. Brain Res 75:201–205

    Article  CAS  Google Scholar 

  53. Mitsiadis TA, Salmivirta M, Muramatsu T et al (1995) Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development 121:37–51

    PubMed  CAS  Google Scholar 

  54. Mishima K, Asai A, Kadomatsu K et al (1997) Increased expression of midkine during the progression of human astrocytomas. Neurosci Lett 233:29–32

    Article  PubMed  CAS  Google Scholar 

  55. Grzelinski M, Steinberg F, Martens T et al (2009) Enhanced antitumorigenic effects in glioblastoma on double targeting of pleiotrophin and its receptor ALK. Neoplasia 11:145–156

    PubMed  CAS  Google Scholar 

  56. Merlo A (2003) Genes and pathways driving glioblastomas in humans and murine disease models. Neurosurg Rev 26:145–158

    PubMed  Google Scholar 

  57. Bani-Yaghoub M, Tremblay RG, Lei JX et al (2006) Role of Sox2 in the development of the mouse neocortex. Dev Biol 295:52–66

    Article  PubMed  CAS  Google Scholar 

  58. Panchision DM (2009) The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 220:562–568

    Article  PubMed  CAS  Google Scholar 

  59. Yamada Y, Kuroiwa T, Nakagawa T et al (2003) Transcriptional expression of survivin and its splice variants in brain tumors in humans. J Neurosurg 99:738–745

    Article  PubMed  CAS  Google Scholar 

  60. Yang L, Cao Z, Li F et al (2004) Tumor-specific gene expression using the survivin promoter is further increased by hypoxia. Gene Ther 11:1215–1223

    Article  PubMed  CAS  Google Scholar 

  61. Kleinschmidt-DeMasters BK, Heinz D, McCarthy PJ et al (2003) Survivin in glioblastomas: protein and messenger RNA expression and comparison with telomerase levels. Arch Pathol Lab Med 127:826–833

    PubMed  CAS  Google Scholar 

  62. Ulasov IV, Rivera AA, Sonabend AM et al (2007) Comparative evaluation of survivin, midkine and CXCR4 promoters for transcriptional targeting of glioma gene therapy. Cancer Biol Ther 6:679–685

    Article  PubMed  CAS  Google Scholar 

  63. Dang L, Fan X, Chaudhry A (2006) Notch3 signaling initiates choroid plexus tumor formation. Oncogene 25:487–491

    PubMed  CAS  Google Scholar 

  64. Sivasankaran B, Degen M, Ghaffari A et al (2009) Tenascin-C is a novel RBPJk-induced target gene for Notch signaling in gliomas. Cancer Res 69:458–465

    Article  PubMed  CAS  Google Scholar 

  65. Tanaka M, Kadokawa Y, Hamada Y et al (1999) Notch2 expression negatively correlates with glial differentiation in the postnatal mouse brain. J Neurobiol 41:524–539

    Article  PubMed  CAS  Google Scholar 

  66. Purow BW, Sundaresan TK, Burdick MJ et al (2008) Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis 29:918–925

    Article  PubMed  CAS  Google Scholar 

  67. Brennan C, Momota H, Hambardzumyan D et al (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS 4:e7752

    Article  CAS  Google Scholar 

  68. Libermann TA, Nusbaum HR, Razon N et al (1985) Amplification and overexpression of the EGF receptor gene in primary human glioblastomas. J Cell Sci Suppl 3:161–172

    Article  PubMed  CAS  Google Scholar 

  69. Ma J, Meng Y, Kwiatkowski DJ et al (2010) Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J Clin Invest 120:103–114

    Article  PubMed  CAS  Google Scholar 

  70. Lino MM, Merlo A, Boulay JL (2010) Notch signaling in glioblastoma: a developmental drug target? BMC Med 8:72

    Article  PubMed  CAS  Google Scholar 

  71. Ohgaki H, Dessen P, Jourde B et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899

    Article  PubMed  CAS  Google Scholar 

  72. Patten BA, Sardi SP, Koirala S et al (2006) Notch1 signaling regulates radial glia differentiation through multiple transcriptional mechanisms. J Neurosci 26:3102–3108

    Article  PubMed  CAS  Google Scholar 

  73. Ikushima H, Todo T, Ino Y et al (2009) Autocrine TGFbeta signaling maintains tumorigenicity of glioma-initiating cells through Sryrelated HMG-box factors. Cell Stem Cell 5:504–514

    Article  PubMed  CAS  Google Scholar 

  74. Mirkin BL, Clark S, Zheng X et al (2005) Identification of midkine as a mediator for intercellular transfer of drug resistance. Oncogene 24:4965–4974

    Article  PubMed  CAS  Google Scholar 

  75. Hu R, Yan Y, Li Q et al (2010) Increased drug efflux along with midkine gene high expression in childhood B-lineage acutelymphoblastic leukemia cells. Int J Hematol 92:105–110

    Article  PubMed  CAS  Google Scholar 

  76. Rosenbaum C, Röhrs S, Müller O et al (2005) Modulation of MRP-1-mediated multidrug resistance by indomethacin analogues. J Med Chem 48:1179–1187

    Article  PubMed  CAS  Google Scholar 

  77. Erguven M, Bilir A, Yazihan N et al (2011) Decreased therapeutic effects of noscapine combined with imatinib mesylate on human glioblastoma in vitro and the effect of midkine. Cancer Cell Int 11:18

    Article  PubMed  CAS  Google Scholar 

  78. Yao X, Tan Z, Gu B et al (2010) Promotion of self-renewal of embryonic stem cells by midkine. Acta Pharmacol Sin 31:629–637

    Article  PubMed  CAS  Google Scholar 

  79. Huang Z, Cheng L, Guryanova OA et al (2010) Cancer stem cells in glioblastoma-molecular signaling and therapeutic targeting. Protein Cell 1:638–655

    Article  PubMed  CAS  Google Scholar 

  80. Takei Y, Kadomatsu K, Goto T et al (2006) Combinational antitumor effect of siRNA against midkine and paclitaxel on growth of human prostate cancer xenografts. Cancer 107:864–873

    Article  PubMed  CAS  Google Scholar 

  81. Wang J, Takeuchi H, Sonobe Y et al (2008) Inhibition of midkine alleviates experimental autoimmune encephalomyelitis through the expansion of regulatory T cell population. PNAS Online USA 105:3915–3920

    Article  CAS  Google Scholar 

  82. Matsui T, Ichihara-Tanaka K, Lan C et al (2010) Midkine inhibitors: application of a simple assay procedure to screening of inhibitory compounds. Int Arch Med 3:12

    Article  PubMed  CAS  Google Scholar 

  83. Sakamoto K, Bu G, Chen S et al (2011) Premature ligand-receptor interaction during biosynthesis limits the production of growth factor midkine and its receptor LDL receptor-related protein 1. J Biol Chem 286:8405–8413

    Article  PubMed  CAS  Google Scholar 

  84. Bilir A, Erguven M, Yazihan N et al (2010) Enhancement of vinorelbine-induced cytotoxicity and apoptosis by clomipramine and lithium chloride in human neuroblastoma cancer cell line SH-SY5Y. J Neurooncol 100:385–395

    Article  PubMed  CAS  Google Scholar 

  85. Rawnaq T, Kunkel M, Bachmann K et al (2011) Serum midkine correlates with tumor progression and imatinib response in gastrointestinal stromal tumors. Ann Surg Oncol 18:559–565

    Article  PubMed  Google Scholar 

  86. Mrugala MM, Adair J, Kiem HP (2010) Temozolomide: expanding its role in brain cancer. Drugs Today (Barc) 46:833–846

    Article  CAS  Google Scholar 

  87. Kanzawa T, Germano IM, Komata T et al (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457

    Article  PubMed  CAS  Google Scholar 

  88. Waller CF (2010) Imatinib mesylate. Recent Result Cancer Res 184:3–20

    Article  CAS  Google Scholar 

  89. Holdhoff M, Supko JG, Gallia GL et al (2010) Intratumoral concentrations of imatinib after oral administration in patients with glioblastoma multiforme. J Neurooncol 97:241–245

    Article  PubMed  CAS  Google Scholar 

  90. Wen PY, Yung WK, Lamborn KR et al (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American brain tumor consortium study 99–08. Clin Cancer Res 12:4899–4907

    Article  PubMed  CAS  Google Scholar 

  91. Breedveld P, Pluim D, Cipriani G et al (2005) The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 65:2577–2582

    Article  PubMed  CAS  Google Scholar 

  92. Ertmer A, Huber V, Gilch S et al (2007) The anticancer drug imatinib induces cellular autophagy. Leukemia 21:936–942

    PubMed  CAS  Google Scholar 

  93. Carew JS, Nawrocki ST, Kahue CN et al (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110:313–322

    Article  PubMed  CAS  Google Scholar 

  94. Erguven M, Yazihan N, Aktas E et al (2010) Carvedilol in glioma treatment alone and with imatinib in vitro. Int J Oncol 36:857–866

    PubMed  CAS  Google Scholar 

  95. Yang F, Brown C, Buettner R et al (2010) Sorafenib induces growth arrest and apoptosis of human glioblastoma cells through the dephosphorylation of signal transducers and activators of transcription 3. Mol Cancer Ther 9:953–962

    Article  PubMed  CAS  Google Scholar 

  96. Iyer R, Fetterly G, Lugade A et al (2010) Sorafenib: a clinical and pharmacologic review. Expert Opin Pharmacother 11:1943–1955

    Article  PubMed  CAS  Google Scholar 

  97. Siegelin MD, Raskett CM, Gilbert CA et al (2010) Sorafenib exerts anti-glioma activity in vitro and in vivo. Neurosci Lett 478:165–170

    Article  PubMed  CAS  Google Scholar 

  98. Mann L, Heldman E, Bersudsky Y et al (2009) Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their antidepressant effect. Bipolar Disord 11:885–896

    Article  PubMed  CAS  Google Scholar 

  99. Pasquali L, Busceti CL, Fulceri F et al (2010) Intracellular pathways underlying the effects of lithium. Behav Pharmacol 21:473–492

    Article  PubMed  CAS  Google Scholar 

  100. Mishra R (2010) Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer 9:144

    Article  PubMed  CAS  Google Scholar 

  101. Jope RS (2011) Glycogen synthase kinase-3 in the etiology and treatment of mood disorders. Front Mol Neurosci 4:16

    PubMed  CAS  Google Scholar 

  102. Los GV, Artemenko IP, Hokin LE (1996) Phosphoinositide signalling in human neuroblastoma cells: biphasic effect of Li  +  on the level of the inositolphosphate second messengers. Adv Enzyme Regul 36:245–264

    Article  PubMed  CAS  Google Scholar 

  103. Nowicki MO, Dmitrieva N, Stein AM et al (2008) Lithium inhibits invasion of glioma cells; possible involvement of glycogen synthase kinase-3. Neuro Oncol 10:690–699

    Article  PubMed  CAS  Google Scholar 

  104. Li Q, Li H, Roughton K et al (2010) Lithium reduces apoptosis and autophagy after neonatal hypoxia-ischemia. Cell Death Dis 1:e56

    Article  PubMed  CAS  Google Scholar 

  105. Sarkar S, Floto RA, Berger Z et al (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111

    Article  PubMed  CAS  Google Scholar 

  106. Lorente M, Torres S, Salazar M et al (2011) Stimulation of ALK by the growth factor midkine renders glioma cells resistant to autophagy-mediated cell death. Autophagy 7:1071–1073

    Article  PubMed  CAS  Google Scholar 

  107. Orrenius S, Nicotera P, Zhivotovsky B (2011) Cell death mechanisms and their implications in toxicology. Toxicol Sci 119:3–19

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mine Ergüven .

Editor information

Editors and Affiliations

Additional information

Funding: This work was supported by Scientific Research Projects Coordination Unit of Istanbul University (Project number: T988/06102006 to Mine Erguven).

Conflict of interest: None declared.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ergüven, M., Bilir, A. (2012). Midkine in Glioblastoma with the Modulator Role Switching Autophagy to Cell Death or Cell Survival. In: Ergüven, M., Muramatsu, T., Bilir, A. (eds) Midkine: From Embryogenesis to Pathogenesis and Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4234-5_25

Download citation

Publish with us

Policies and ethics