Skip to main content

Bacillus thuringiensis Recombinant Insecticidal Protein Production

  • Chapter
  • First Online:
Bacillus thuringiensis Biotechnology

Abstract

The initial excitement of applying recombinant DNA technology to insecticidal proteins of Bacillus thuringiensis was subdued by regulatory caution about the technology and the genetic complexity of the proteins themselves. While seven biopesticide products containing recombinant proteins were eventually manufactured, expression of the proteins in Gram negative and Gram positive bacteria is predominantly for discovery and mode of action work. Regulatory studies for the registration of transgenic plants requires microbially produced insecticidal proteins in the tens of grams. Transgenic plants now dominate the production of B. thuringiensis recombinant insecticidal proteins, with expression technology yielding more than 10-fold higher levels than the earliest registered plants and worldwide use on nearly 60 million hectares.

Dedicated to the memory of Lee F. Adams III, 1958–2010

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams LF, Visick JE, Whiteley HR (1989) A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli. J Bacteriol 171:521–530

    CAS  Google Scholar 

  • Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 177:6027–6032

    CAS  Google Scholar 

  • Akiba T, Higuchi K, Mizuki E, Ekino K, Shin T, Ohba M, Kanai R, Harata K (2006) Nontoxic crystal protein from Bacillus thuringiensis demonstrates a remarkable structural similarity to beta-pore-forming toxins. Proteins 63:243–248

    Article  CAS  Google Scholar 

  • Akiba T, Abe Y, Kitada S, Kusaka Y, Ito A, Ichimatsu T, Katayama H, Akao T, Higuchi K, Mizuki E, Ohba M, Kanai R, Harata K (2009) Crystal structure of the parasporin-2 Bacillus thuringiensis toxin that recognizes cancer cells. J Mol Biol 386:121–133

    Article  CAS  Google Scholar 

  • Anderson HM, Allen JR, Groat JR, Johnson SC, Kelly RA, Korte J, Rice JF (2008) Corn plant and seed corresponding to transgenic event MON89034 and methods for detection and use thereof. US Patent Application 20080260932 A1

    Google Scholar 

  • Arantes O, Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108:115–119

    Article  CAS  Google Scholar 

  • Aronson AI (1994) Flexibility in the protoxin composition of Bacillus thuringiensis. FEMS Microbiol Lett 117:21–27

    Article  CAS  Google Scholar 

  • Barbour E, Bing JW, Cardineau GA, Cressman RF Jr, Gupta M, Locke MEH, Hondred D, Keaschall JW, Koziel MG, Meyer TE, Moellenbeck D, Narva KE, Nirunsuksiri W, Ritchie SW, Rudert ML, Sanders CD, Shao A, Stelman SJ, Stucker DS, Tagliani LA, Van Zante WM (2007) Corn event TC1507 and methods for detection thereof. US Patent 7,288,643

    Google Scholar 

  • Baum JA, Malvar T (1995) Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol 18:1–12

    Article  CAS  Google Scholar 

  • Baum JA, Coyle DM, Gilbert MP, Jany CS, Gawron-Burke C (1990) Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol 56:3420–3428

    CAS  Google Scholar 

  • Baum JA, Kakefuda M, Gawron-Burke C (1996) Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system. Appl Environ Microbiol 62:4367–4373

    CAS  Google Scholar 

  • Baum JA, Johnson TB, Carlton BC (1999) Bacillus thuringiensis natural and recombinant bioinsecticide products. In: Hall FR, Menn JJ (eds) Methods in biotechnology, vol 5: biopesticides: use and delivery. Humana Press, Totowa, pp 189–210

    Google Scholar 

  • Beazley KA, Coombe TR, Groth ME, Hinchey TB, Pershing JC, Vaughn TT, Zhang B (2008) Corn plant Mon88017 and compositions and methods for detection thereof. US Patent Application 20080028482 A1

    Google Scholar 

  • Beegle CC, Yamamoto T (1992) History of Bacillus thuringiensis Berliner research and development. Can Entomol 124:587–616

    Article  Google Scholar 

  • Bing JW, Cressman RF Jr, Gupta M, Hakimi SM, Hondred D, Krone TL, Hartnett Locke ME, Luckring AK, Meyer SE, Moellenbeck D, Narva KE, Olson PD, Sanders CD, Wang J, Zhang J, Zhong G-Y (2008) Corn event DAS-59122-7 and methods for detection thereof. US Patent 7,323,556

    Google Scholar 

  • Bogdanova NN, Corbin DR, Malvar TM, Perlak FJ, Roberts JK, Romano CP (2009) Nucleotide sequences encoding insecticidal proteins. US Patent Application 20090238798 A1

    Google Scholar 

  • Boonserm P, Pornwiroon W, Katzenmeier G, Panyim S, Angsuthanasombat C (2004) Optimised expression in Escherichia coli and purification of the functional form of the Bacillus thuringiensis Cry4Aa delta-endotoxin. Protein Expr Purif 35:397–403

    Article  CAS  Google Scholar 

  • Boonserm P, Davis P, Ellar DJ, Li J (2005) Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol 348:363–382

    Article  CAS  Google Scholar 

  • Boonserm P, Mo M, Angsuthanasombat C, Lescar J (2006) Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J Bacteriol 188:3391–4401

    Article  CAS  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful. Insect Biochem Mol Biol 41:423–431

    Article  CAS  Google Scholar 

  • Brizzard BL, Schnepf HE, Kronstad JW (1991) Expression of the cryIB crystal protein gene of Bacillus thuringiensis. Mol Gen Genet 231:59–64

    Article  CAS  Google Scholar 

  • CERA (2010a) GM Crop Database. Center for Environmental Risk Assessment (CERA), ILSI Research Foundation, Washington DC. SYN-EV176-9 (176). http://cera-gmc.org/index.php?evidcode%5B%5D=176&auDate1=&auDate2=&action=gm_crop_database&mode=Submit

    Google Scholar 

  • CERA (2010b) GM Crop Database. Center for Environmental Risk Assessment (CERA), ILSI Research Foundation, Washington D.C. MON-ØØ531-6, MON-ØØ757-7. http://cera-gmc.org/index.php?evidcode%5B%5D=MON531%2F757%2F1076&auDate1=&auDate2=&action=gm_crop_database&mode=Submit

    Google Scholar 

  • Chak KF, Tseng MY, Yamamoto T (1994) Expression of the crystal protein gene under the control of the alpha-amylase promoter in Bacillus thuringiensis strains. Appl Environ Microbiol 60:2304–2310

    CAS  Google Scholar 

  • Chaoyin Y, Wei S, Sun M, Lin L, Faju C, Zhengquan H, Ziniu Y (2007) Comparative study on effect of different promoters on expression of cry1Ac in Bacillus thuringiensis chromosome. J Appl Microbiol 103:454–461

    Article  CAS  Google Scholar 

  • Cohen S, Dym O, Albeck S, Ben-Dov E, Cahan R, Firer M, Zaritsky A (2008) High-resolution crystal structure of activated Cyt2Ba monomer from Bacillus thuringiensis subsp. israelensis. J Mol Biol 380:820–827

    Article  CAS  Google Scholar 

  • Corbin DR, Romano CP (2006) Plants transformed to express Cry2A delta-endotoxins. US Patent 7,064,249

    Google Scholar 

  • Crickmore N, Nicholls C, Earp DJ, Hodgman TC, Ellar DJ (1990) The construction of Bacillus thuringiensis strains expressing novel entomocidal delta-endotoxin combinations. Biochem J 270:133–136

    CAS  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    CAS  Google Scholar 

  • de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433

    Article  CAS  Google Scholar 

  • De Rocher EJ, Vargo-Gogola TC, Diehn SH, Green PJ (1998) Direct evidence for rapid degradation of Bacillus thuringiensis toxin mRNA as a cause of poor expression in plants. Plant Physiol 117:1445–1461

    Article  CAS  Google Scholar 

  • Dervyn E, Poncet S, Klier A, Rapoport G (1995) Transcriptional regulation of the cryIVD gene operon from Bacillus thuringiensis subsp. israelensis. J Bacteriol 177:2283–2291

    CAS  Google Scholar 

  • Diehn SH, Chiu WL, De Rocher EJ, Green PJ (1998) Premature polyadenylation at multiple sites within a Bacillus thuringiensis toxin gene-coding region. Plant Physiol 117:1433–1443

    Article  CAS  Google Scholar 

  • Donovan WP, Donovan JC, Engleman JT (2001) Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. J Invertebr Pathol 78:45–51

    Article  CAS  Google Scholar 

  • Ellis DM, Negrotto DV, Shi L, Shotkoski FA, Thomas CR (2006) Cot102 insecticidal cotton. US Patent Application 20060130175 A1

    Google Scholar 

  • Evans SL (2004) Producing proteins derived from genetically modified organisms for toxicology and environmental fate assessment of biopesticides. In: Parekh SR (ed) The GMO handbook: genetically modified animals, microbes and plants in biotechnology. Humana Press, Totowa, pp 53–83

    Google Scholar 

  • Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft JR, Pangborn W, English L (2001) Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr D Biol Crystallogr 57:1101–1109

    Article  CAS  Google Scholar 

  • Gao A-G, Kolacz KH, Macrae TC, Miklos JA, Paradise MS, Perlak FJ, Dressel Toedebusch AS (2009) Soybean plant and seed corresponding to transgenic event MON87701 and methods for detection thereof. US Patent Application 20090130071 A1

    Google Scholar 

  • Gawron-Burke C, Baum JA (1991) Genetic manipulation of Bacillus thuringiensis insecticidal crystal protein genes in bacteria. Genet Eng (N Y) 13:237–263

    Article  CAS  Google Scholar 

  • Ge AZ, Pfister RM, Dean DH (1990) Hyperexpression of a Bacillus thuringiensis delta-endotoxin-encoding gene in Escherichia coli: properties of the product. Gene 93:49–54

    Article  CAS  Google Scholar 

  • Gilmer AJ, Baum JA (1999) Chimeric lepidopteran-toxic crystal proteins. US Patent 5,965,428

    Google Scholar 

  • Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz JL, Brousseau R, Cygler M (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol 254:447–464

    Article  CAS  Google Scholar 

  • Guo S, Ye S, Liu Y, Wei L, Xue J, Wu H, Song F, Zhang J, Wu X, Huang D, Rao Z (2009) Crystal structure of Bacillus thuringiensis Cry8Ea1: an insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J Struct Biol 168:259–266

    Article  CAS  Google Scholar 

  • Gustafson ME, Clayton RA, Lavrik PB, Johnson GV, Leimgruber RM, Sims SR, Bartnicki DE (1997) Large-scale production and characterization of Bacillus thuringiensis subsp. tenebrionis insecticidal protein from Escherichia coli. Appl Microbiol Biotechnol 47:255–261

    Article  CAS  Google Scholar 

  • Hayakawa T, Howlader MT, Yamagiwa M, Sakai H (2008) Design and construction of a synthetic Bacillus thuringiensis Cry4Aa gene: hyperexpression in Escherichia coli. Appl Microbiol Biotechnol 80:1033–1037

    Article  CAS  Google Scholar 

  • Hire RS, Makde RD, Dongre TK, D’souza SF (2008) Characterization of the cry1Ac17 gene from an indigenous strain of Bacillus thuringiensis subsp. kenyae. Curr Microbiol 57:570–557

    Article  CAS  Google Scholar 

  • Huang KX, Badger M, Haney K, Evans SL (2007) Large scale production of Bacillus thuringiensis PS149B1 insecticidal proteins Cry34Ab1 and Cry35Ab1 from Pseudomonas fluorescens. Protein Expr Purif 53:325–330

    Article  CAS  Google Scholar 

  • Huber SA, Roberts JK, Shappley ZW, Doherty S (2007) Cotton event MON15985 and compositions and methods for detection thereof. US Patent 7,223,907

    Google Scholar 

  • James C (2010) Global Status of Commercialized Biotech/GM Crops: 2010. ISAAA Brief No. 42. ISAAA, Ithaca, NY

    Google Scholar 

  • Kalman S, Kiehne KL, Cooper N, Reynoso MS, Yamamoto T (1995) Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Appl Environ Microbiol 61:3063–3068

    CAS  Google Scholar 

  • Kegley SE, Hill BR, Orme S, Choi AH (2011) PAN Pesticide Database, Pesticide Action Network, North America (San Francisco, CA). http://www.pesticideinfo.org

  • Kevany BM, Rasko DA, Thomas MG (2009) Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl Environ Microbiol 75:1144–1155

    Article  CAS  Google Scholar 

  • Klimowicz AK, Benson TA, Handelsman J (2010) A quadruple-enterotoxin-deficient mutant of Bacillus thuringiensis remains insecticidal. Microbiology 156:3575–3583

    Article  CAS  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rgodes R, Warren GW, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11:194–200

    Article  CAS  Google Scholar 

  • Lecadet MM, Chaufaux J, Ribier J, Lereclus D (1992) Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Appl Environ Microbiol 58:840–849

    CAS  Google Scholar 

  • Li HM, Chiu CC (2010) Protein transport into chloroplasts. Annu Rev Plant Biol 61:157–180

    Article  CAS  Google Scholar 

  • Li JD, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 353:815–821

    Article  CAS  Google Scholar 

  • Li J, Koni PA, Ellar DJ (1996) Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J Mol Biol 257:129–152

    Article  CAS  Google Scholar 

  • Lilley M, Ruffell RN, Somerville HJ (1980) Purification of the insecticidal toxin in crystals of Bacillus thuringiensis. J Gen Microbiol 118:1–11

    CAS  Google Scholar 

  • Liu D (2009) Design of gene constructs for transgenic maize. In: Scott MP (ed) Methods in molecular biology: transgenic maize, vol 526. Humana Press, a part of Springer Science + Business Media, USA

    Google Scholar 

  • Liu X, Peng D, Luo Y, Ruan L, Yu Z, Sun M (2009) Construction of an Escherichia coli to Bacillus thuringiensis shuttle vector for large DNA fragments. Appl Microbiol Biotechnol 82:765–772

    Article  CAS  Google Scholar 

  • Long N, Bottoms J, Meghji M, Hart H, Que Q, Pulliam D (2009) Corn Event MIR162. US Patent Application 20090300784 A1

    Google Scholar 

  • Maertens B, Spriestersbach A, von Groll U, Roth U, Kubicek J, Gerrits M, Graf M, Liss M, Daubert D, Wagner R, Schäfer F (2010) Gene optimization mechanisms: a multi-gene study reveals a high success rate of full-length human proteins expressed in Escherichia coli. Protein Sci 19:1312–1326

    Article  CAS  Google Scholar 

  • Makino T, Skretas G, Georgiou G (2011) Strain engineering for improved expression of recombinant proteins in bacteria. Microb Cell Factor 10:32

    Article  CAS  Google Scholar 

  • Manasherob R, Zaritsky A, Ben-Dov E, Saxena D, Barak Z, Einav M (2001) Effect of accessory proteins P19 and P20 on cytolytic activity of Cyt1Aa from Bacillus thuringiensis subsp. israelensis in Escherichia coli. Curr Microbiol 43:355–364

    CAS  Google Scholar 

  • Mettus AM, Macaluso A (1990) Expression of Bacillus thuringiensis delta-endotoxin genes during vegetative growth. Appl Environ Microbiol 56:1128–1134

    CAS  Google Scholar 

  • Monsanto Company Press Release (2008) Monsanto confirms safety of research cotton in Texas. http://monsanto.mediaroom.com/index.php?s =43&item=6666

    Google Scholar 

  • Morimoto T, Kadoya AR, Endo K, Tohat M, Sawda K, Liu S, Ozawa T, Kodama T, Kakeshita H, Kageyama Y, Manabe K, Kanaya S, Ara K, Ozaki K, Ogasawara N (2008) Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 15:73–81

    Article  CAS  Google Scholar 

  • Morse RJ, Yamamoto T, Stroud RM (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9:409–417

    Article  CAS  Google Scholar 

  • Nguyen HT, Jehle JA (2009) Expression of Cry3Bb1 in transgenic corn MON88017. J Agric Food Chem 57:9990–9996

    Article  CAS  Google Scholar 

  • Panetta JD (1993) Engineered microbes: the CellCap® system. In: Kim L (ed) Advanced engineered pesticides. Marcel Dekker, New York, pp 379–392

    Google Scholar 

  • Parra G, Bradnam K, Rose AB, Korf I (2011) Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic Acids Res 39:5328–5337

    Article  CAS  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88:3324–3328

    Article  CAS  Google Scholar 

  • Risk Assessment and Risk, Management Plan (2002) Application for licence for dealings involving an intentional release into the environment, DIR 012/2002. Commercial release of Bollgard II® cotton. Monsanto Australia Ltd. http://cera-gmc.org/docs/decdocs/06-300-001.pdf. Accessed Sept 2002

  • Rosati A, Bogani P, Santarlasci A, Buiatti M (2008) Characterisation of 3¢ transgene insertion site and derived mRNAs in MON810 YieldGard maize. Plant Mol Biol 67:271–281

    Article  CAS  Google Scholar 

  • Sanchis V, Agaisse H, Chaufaux J, Lereclus D (1997) A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl Environ Microbiol 63:779–784

    CAS  Google Scholar 

  • Sanchis V, Gohar M, Chaufaux J, Arantes O, Meier A, Agaisse H, Cayley J, Lereclus D (1999) Development and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance. Appl Environ Microbiol 65:4032–4039

    CAS  Google Scholar 

  • Sazhenskiy V, Zaritsky A, Itsko M (2010) Expression in Escherichia coli of the native cyt1Aa from Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 76:3409–3411

    Article  CAS  Google Scholar 

  • Schnepf HE, Wong HC, Whiteley HR (1987) Expression of a cloned Bacillus thuringiensis crystal protein gene in Escherichia coli. J Bacteriol 169:4110–4118

    CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  Google Scholar 

  • Song R, Peng D, Yu Z, Sun M (2008) Carboxy-terminal half of Cry1C can help vegetative insecticidal protein to form inclusion bodies in the mother cell of Bacillus thuringiensis. Appl Microbiol Biotechnol 80:647–654

    Article  CAS  Google Scholar 

  • Song P, Tagliani LA, Pellow JW (2011) Cry1F and Cry1Ac transgenic cotton lines and event-specific identification thereof. US Patent 7,883,850

    Google Scholar 

  • Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128

    Article  Google Scholar 

  • Squires CH, Retallack DM, Chew LC, Ramseier TM, Schneider JC, Talbot HW (2004) Heterologous protein production in P. fluorescens. Bioprocess Int 2:54–59

    CAS  Google Scholar 

  • Streatfield SJ (2007) Heterologous protein production in plants. Plant Biotechnol J 5:2–15

    Article  CAS  Google Scholar 

  • Structural Genomics Consortium (2008) Protein production and purification. Nat Methods 5:135–146

    Article  Google Scholar 

  • Tabashnik BE, Van Rensburg JB, Carrière Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102:2011–2025

    Article  CAS  Google Scholar 

  • Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222

    Article  CAS  Google Scholar 

  • Thamthiankul Chankhamhaengdecha S, Tantichodok A, Panbangred W (2008) Spore stage expression of a vegetative insecticidal gene increase toxicity of Bacillus thuringiensis subsp. aizawai SP41 against Spodoptera exigua. J Biotechnol 136:122–128

    Article  Google Scholar 

  • Thompson M, Schwab GE (1996) Delta-endotoxin expression in pseudomonas fluorescens. US Patent 5,527,883

    Google Scholar 

  • US Environmental Protection Agency (2000) SAP Report No. 99-06A, 4 Feb 2000. Characterization and non-target organism data requirements for protein plant-pesticides. http://www.epa.gov/scipoly/sap/meetings/1999/december/report.pdf

  • US Environmental Protection Agency (2001) Registration action document—Bacillus thuringiensis plant-incorporated protectants. http://www.epa.gov/oppbppd1/biopesticides/pips/bt_brad.htm

  • US Environmental Protection Agency (2002) Bacillus thuringiensis Cry2Ab2 protein and its genetic material necessary for its production in cotton (Chemical PC Code: 006487) AMENDED. http://www.epa.gov/oppbppd1/biopesticides/ingredients///tech_docs/brad_006487.pdf

  • US Environmental Protection Agency (2005) Bacillus thuringiensis Cry1F (synpro) and Cry1Ac (synpro)Construct 281/3006 Insecticidal Crystal Proteins as expressed in cotton (Chemical PC Codes: 006512 and 006513, respectively). http://www.epa.gov/oppbppd1/biopesticides/ingredients/tech_docs/brad_006512.pdf

  • US Environmental Protection Agency (2007) Modified Cry3A protein and the genetic material necessary for its production (via elements of pZM26) in event MIR604 corn SYN-IR604-8. http://www.epa.gov/oppbppd1/biopesticides/pips/mcry3a-brad.pdf

  • US Environmental Protection Agency (2008) Bacillus thuringiensis modified Cry1Ab (SYN-IR67B-1) and Vip3Aa19 (SYN-IR102-7) insecticidal proteins and the genetic material necessary for their production in COT102 X COT67B cotton. http://www.epa.gov/oppbppd1/biopesticides/ingredients/tech_docs/brad_006529.pdf

  • US Environmental Protection Agency (2009) Bacillus thuringiensis Vip3Aa20 insecticidal protein and the genetic material necessary for its production (via elements of vector pNOV1300) in event MIR162 maize (OECD Unique Identifier: SYN-IR162-4) (PC Code: 006599). http://www.epa.gov/oppbppd1/biopesticides/ingredients/tech_docs/brad_006599.pdf

  • US Environmental Protection Agency (2010a) Cry1Ab and Cry1F Bacillus thuringiensis (Bt) corn plant-incorporated protectants. http://www.epa.gov/oppbppd1/biopesticides/pips/cry1f-cry1ab-brad.pdf

  • US Environmental Protection Agency (2010b) Bacillus thuringiensis Cry3Bb1 protein and the genetic material necessary for its production (Vector PV-ZMIR13L) in MON 863 corn (OECD Unique Identifier: MON-ØØ863-5) (PC Code: 006484), Bacillus thuringiensis Cry3Bb1 protein and the genetic material necessary for its production (Vector PV-ZMIR39) in MON 88017 corn (OECD Unique Identifier: MON-88Ø17-3) (PC Code: 006498). http://www.epa.gov/oppbppd1/biopesticides/pips/cry3bb1-brad.pdf

  • US Environmental Protection Agency (2010c) Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins and the genetic material necessary for their production (PHP17662T-DNA) in event DAS-59122-7 corn (OECD Unique Identifier: DAS-59122-7) (PC Code: 006490). http://www.epa.gov/oppbppd1/biopesticides/pips/cry3435ab1-brad.pdf

  • US Environmental Protection Agency (2010d) Bacillus thuringiensis Cry1A.105 and Cry2Ab2 insecticidal proteins and the genetic material, necessary for their production in corn (PC Codes: 006515 (Cry2Ab2), 006514 (Cry1A.105)). http://www.epa.gov/oppbppd1/biopesticides/pips/mon-89034-brad.pdf

  • US Environmental Protection Agency (2010e) Bacillus thuringiensis Cry1Ac protein and the genetic material (Vector PV-GMIR9) necessary for its production in MON 87701 (OECD Unique Identifier: MON 877Ø1-2) soybean (PC Code: 006532). http://www.epa.gov/oppbppd1/biopesticides/pips/bt-cry1ac-protien.pdf

  • US Environmental Protection Agency (2011a) Introduction to biotechnology regulation for pesticides. http://www.epa.gov/pesticides/biopesticides/regtools/biotech-reg-prod.htm#overview

  • US Environmental Protection Agency (2011b) Current & previously registered section 3 PIP registrations. http://www.epa.gov/oppbppd1/biopesticides/pips/pip_list.htm. Accessed 15 Feb 2011

  • US EPA (2011c) Biopesticide fact sheet Bacillus thuringiensis cry1Ab delta-endotoxin and the genetic material necessary for its production (Plasmid Vector pCIB4431) in corn (Event 176) (006458). http://cera-gmc.org/docs/decdocs/01-290-041.pdf. Accessed 30 July 2011

  • van Aarssen R, Soetaert P, Stam M, Dockx J, Gosselé V, Seurinck J, Reynaerts A, Cornelissen M (1995) Cry IA(b) transcript formation in tobacco is inefficient. Plant Mol Biol 28:513–524

    Article  Google Scholar 

  • Visick JE, Whiteley HR (1991) Effect of a 20-kilodalton protein from Bacillus thuringiensis subsp. israelensis on production of the CytA protein by Escherichia coli. J Bacteriol 173:1748–1756

    CAS  Google Scholar 

  • Walker KA, Hellmich RL, Lewis LC (2000) Late-instar European corn borer (Lepidoptera: Crambidae) tunneling and survival in transgenic corn hybrids. J Econ Entomol 93:1276–1285

    Article  CAS  Google Scholar 

  • Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci USA 100:2760–2765

    Article  CAS  Google Scholar 

  • Whiteley HR, Schnepf HE, Tomczak K, Lara JC (1987) Structure and regulation of the crystal protein gene of Bacillus thuringiensis. In: Maramorosch K (ed) Biotechnology advances in invertebrate pathology and cell culture. Academic Press, San Diego, pp 13–27

    Chapter  Google Scholar 

  • Yamamoto T (2001) One hundred years of Bacillus thuringiensis research and development: discovery to transgenic crops. J Insect Biotechnol Sericol 70:1–23

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ernest Schnepf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schnepf, H.E. (2012). Bacillus thuringiensis Recombinant Insecticidal Protein Production. In: Sansinenea, E. (eds) Bacillus thuringiensis Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3021-2_14

Download citation

Publish with us

Policies and ethics