Skip to main content

Environmental and Drug Induced Renal Damage; The Way to Protect

  • Conference paper
  • First Online:
Environmental and Food Safety and Security for South-East Europe and Ukraine

Abstract

Kidneys are targets of numerous toxicants due to anatomical, physiological and biochemical features of the organs. Factors contributing to the sensitivity of kidneys include large blood flow, presence of a variety of transporters, a lot of functionally necessary metabolizing enzymes, etc. This paper reviews some mechanisms of nephrotoxic action of widely distributed metal compounds and of an anticancer drug cisplatin as a model of drug induced renal damage. Cisplatin is known to induce nephropathy that is restricted primarily to the S3, segment of the proximal tubule, with involvement of S2, and S1 segments at higher doses. This particularity appears to be derived from the distribution of enzymes and transport proteins important for uptake of cisplatin into proximal tubule cells: apical γ-glutamyltranspeptidase and the basolateral organic anion transport system. Regional distributions of transport mechanisms for binding proteins appear to be important in the expression of nephrotoxicity of cisplatin. According to the mechanism of damage the way to protect is proposed with application of antioxidants and mighty antioxidants such as cluster rhenium compounds with organic ligands that contain an unique quadruple bond are demonstrated as nephroprotectors in the model of tumor growth and cisplatin application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babiy SO, Dyomshyna OO, Shtemenko NI (2010) Influence antitumor system rhenium-platinum on the renal function in rats model of toxic nephropathy (in Russian). Bicник пpoблeм бioлoгiї тa мeдицини 3:94–101

    Google Scholar 

  2. Bernareggi A, Torti L, Facino RM et al (1995) Characterization of cisplatin-glutathione adducts by liquid chromatography mass spectrometry: evidence for their formation in vitro but not in vivo after concomitant administration of cisplatin and glutathione to rats and cancer patients. J Chromatogr 669:247–263

    Article  CAS  Google Scholar 

  3. Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204:274–308

    Article  CAS  Google Scholar 

  4. Ercal N, Gurer-Orhan H, Aykin-Burns N (2009) Toxic metal and oxidative stress Part I: mechanisms involved in metal induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  Google Scholar 

  5. Evenepoel P (2004) Acute toxic renal failure. Best Pract Res Clin Anaesthesiol 18:37–52

    Article  CAS  Google Scholar 

  6. Goldberg RM, Tabah-Fisch I, Bleiberg H et al (2006) Pooled analysis of safety and efficacy of oxaliplatin plus fluorouracil/leucovorin administered bimonthly in elderly patients with colorectal cancer. J Clin Oncol 24:4085–4091

    Article  CAS  Google Scholar 

  7. Gurer H, Ercal N (2000) Can antioxidants be beneficial in the treatment of lead poisoning. Free Radic Biol Med 29:927–945

    Article  CAS  Google Scholar 

  8. Hanigan MH, Lykissa ED, Townsend DM et al (2001) γ-Glutamyl transpeptidase-deficient mice are resistant to the nephrotoxic effects of cisplatin. Am J Pathol 159:1889–1894

    Article  CAS  Google Scholar 

  9. Hanigan MH, Deng M, Zhang L et al (2005) Stress response inhibits the nephrotoxicity of cisplatin. Am J Physiol Renal Physiol 288:125–132

    Article  Google Scholar 

  10. Hultberg B, Anderson A, Isaksson A (2001) Interaction of metals and thiols in cell damage and glutathione distribution: potentiation of mercury toxicity by dithiothreitol. Toxicology 156:93–100

    Article  CAS  Google Scholar 

  11. Ishikawa T, Ali-Osman F (1993) Glutathione-associated cis-diamminedichloroplatinum (II) metabolism and ATP-dependent efflux from leukemia cells. J Biol Chem 268:20116–20125

    CAS  Google Scholar 

  12. Ivchuk VV, Stemenko NI (2008) Hepatocyte functional activity of rats with cancerogenesis. Bull Dnipropetrovsk Natl Univ Biol Ecol (Ukrainian Lang) 16(2):60–64

    Google Scholar 

  13. Jones MM, Basinger MA, Holscher MA (1992) Control of the nephrotoxicity of cisplatin by clinically used sulfur-containing compounds. Fundam Appl Toxicol 18:181–188

    Article  CAS  Google Scholar 

  14. Lavery TJ, Kemper CM, Sanderson K (2009) Heavy metal toxicity of kidney and bone tissues in South Australian adult bottlenose dolphins (Tursiops aduncus). Mar Environ Res 67:1–7

    Article  CAS  Google Scholar 

  15. Lucena MI, Andrade RJ, Cabello MR (1995) Aminoglycoside-associated nephrotoxicity in extrahepatic obstructive jaundice. J Hepatol 22(2):189–196

    Article  CAS  Google Scholar 

  16. Markowitz GS, Perazella MA (2005) Drug-induced renal failure: a focus on tubulointerstitial disease. Clin Chimica Acta 351:31–47

    Article  CAS  Google Scholar 

  17. Mohammadirad A, Abdolahi M (2011) A systematic review on oxidant/antioxidant imbalance in aluminium toxicity. Int J Pharmacol 7(1):12–21

    Article  CAS  Google Scholar 

  18. Pater ME, Mindiola DJ, Ouyang X et al (1998) A quadroply-bounded dirhenium complex bridged by two N1/N6 adenate ligands. Inorg Chem Commun 1:465–477

    Google Scholar 

  19. Perazella MA (2009) Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol 4:1275–1283

    Article  CAS  Google Scholar 

  20. Quig D (1998) Cysteine metabolism and metal toxicity. Altern Med Rev 3(4):262–270

    CAS  Google Scholar 

  21. Ries F, Klastersky J (1986) Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am J Kidney Dis 8(5):368–379

    CAS  Google Scholar 

  22. Sabolic I (2006) Common mechanisms in nephropathy induced by toxic metals. Nephron Physiol 104:107–114

    Article  Google Scholar 

  23. Sabolic I, Ljubojevic M, Herak-Kramberger CM et al (2002) Cd-MT causes endocytosis of brush-border transporters in rat renal proximal tubules. Am J Physiol Renal Physiol 283:1389–1402

    Google Scholar 

  24. Sadzuka Y, Shimizu Y, Takino Y et al (1994) Protection against cisplatin-induced nephrotoxicity in the rat by inducers and an inhibitor of glutathione S-transferase. Biochem Pharmacol 48:453–459

    CAS  Google Scholar 

  25. Sheikh-Hamad D (2008) Cisplatin-induced cytoxicity: is the nucleus relevant? Am J Physiol Renal Physiol 295:42–43

    Article  Google Scholar 

  26. Shtemenko NI, Berzenina OV, Yegorova DE et al (2008) Liposomal forms of rhenium cluster compounds: enhancement of biological activity. Chem Biodivers 5:1660–1667

    Article  CAS  Google Scholar 

  27. Shtemenko AV, Collery P, Shtemenko NI et al (2009) Synthesis, characrerization, in vivo antitumor properties of the cluster rhenium compound with GABA ligands and its synergism with cisplatin. Dalton Trans 26:5132–5136

    Article  Google Scholar 

  28. Singh NP, Ganguli A, Prakash A (2003) Drug-induced kidney diseases. J Assoc Physicians India 51:970–979

    CAS  Google Scholar 

  29. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336

    Article  CAS  Google Scholar 

  30. Thevenod F (2003) Nephrotoxicity and the proximal tubule. Nephron Physiol 93:87–93

    Article  Google Scholar 

  31. Townsend DM, Deng M, Zhang L et al (2003) Metabolism of cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol 14:1–10

    Article  CAS  Google Scholar 

  32. Uboh FE, Akpanabiatu MI, Ndem JI et al (2009) Comparative nephrotoxic effect associated with exposure to diesel and gasoline vapours in rats. J Toxicol Environ Health Sci 1(3):068–074

    CAS  Google Scholar 

  33. Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  34. Viale M, Vannozzi MO, Pastrone I et al (2000) Reduction of cisplatin nephrotoxicity by procainamide: does the formation of a cisplatin-procainamide complex play a role? J Pharmacol Exp Ther 293:829–836

    CAS  Google Scholar 

  35. Vleet TRV, Schnellmann RG (2003) Toxic nephropathy: environmental chemicals. Semin Nephrol 23(5):500–508

    Article  Google Scholar 

  36. Wyatt CM, Arons RR, Klotman PE et al (2006) Acute renal failure in hospitalized patients with HIV: risk factors and impact on in-hospital mortality. AIDS 20:561–565

    Article  Google Scholar 

  37. Zadak Z, Hyspler R, Ticha A, Hronek M (2009) Antioxidants and vitamins in clinical conditions. Physiol Res 58(1):13–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Babiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Babiy, S., Dyomshyna, O., Loskutova, T., Shtemenko, N.I. (2012). Environmental and Drug Induced Renal Damage; The Way to Protect. In: Vitale, K. (eds) Environmental and Food Safety and Security for South-East Europe and Ukraine. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2953-7_23

Download citation

Publish with us

Policies and ethics