Skip to main content

The Status of Research on Constructed Wetlands

  • Conference paper
  • First Online:
Environmental and Food Safety and Security for South-East Europe and Ukraine

Abstract

Constructed (treatment) wetlands have been state of the art in wastewater treatment technology for decades. Design and operation are determined mainly on the basis of the results of long-term experience. Knowledge of the role of specific removal processes like anaerobic ammonium oxidation, predatory activity of protozoa, bdellovibrio, bacteriophages etc. in the rhizosphere is still insufficient. Basic research is necessary to investigate the transformations involved and to understand the interrelations of element cycles. New findings from research and practice will identify new and expanded applications for highly efficient treatment, particularly of industrial wastewaters. New technologies, such as the combination of wastewater treatment and energy production using “energy” plants, should be the focus of future research. Basic research on element cycle dynamics will help to understand the fundamental processes of greenhouse gas generation in wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adriano DC (2001) Trace elements in the terrestrial environments: biogeochemistry, bioavailability and risks of metals. Springer, New York

    Google Scholar 

  2. Alcantara S, Velasco A, Munoz A, Cid J, Revah S, Razo-Flores E (2004) Hydrogen sulphide oxidation by a microbial consortium in a recirculation reactor system: sulfur formation under oxygen limitation and removal of phenols. Environ Sci Technol 38:918–923

    Article  CAS  Google Scholar 

  3. Al-Malack MH, Anderson GK, Almasi A (1998) Treatment of anoxic pond effluent using crossflow microfiltration. Water Res 32:3738–3746

    Article  CAS  Google Scholar 

  4. Alvarez JA, Ruiz I, Soto M (2008) Anarobic digesters as a pretreatment for constructed wetlands. Ecol Eng 33:54–67

    Article  Google Scholar 

  5. Axelrood PE, Clarke AM, Radley R, Zemcov SJV (1996) Douglas-fir root-associated microorganisms with inhibitory activity towards fungal plant pathogens and human bacterial pathogens. Can J Microbiol 42:690–700

    Article  CAS  Google Scholar 

  6. Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenerg 25:1–28

    Article  Google Scholar 

  7. Bezbaruah AN, Zhang TC (2004) pH, redox, and oxygen microprofiles in rhizosphere of bulrush (Scirpus validus) in a constructed wetland treating municipal wastewater. Biotechnol Bioeng 88:60–70

    Article  CAS  Google Scholar 

  8. Bhatt P, Kumar MS, Mudliar S, Chakrabarti T (2007) Biodegradation of chlorinated compounds – a review. Crit Rev Environ Sci Technol 37:165–198

    Article  CAS  Google Scholar 

  9. Billore SK, Prashant K, Sharma JK (2009) Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra. Water Sci Technol 60:2851–2859

    Article  CAS  Google Scholar 

  10. Borjesson P, Berndes G (2006) The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenerg 30:428–438

    Article  CAS  Google Scholar 

  11. Boudou JP, Chehimi M, Broniek E, Siemieniewska T, Bimer J (2003) Adsorption of H2S or SO2 on an activated carbon cloth modified by ammonia treatment. Carbon 41:1999–2007

    Article  CAS  Google Scholar 

  12. Braun M, Barley B, Wood H (2001) Minewater treatment. IWA, London. ISBN ISBN 1843390043

    Google Scholar 

  13. Brisson J, Chazarenc F (2009) Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? Ecol Eng 407:3923–3930

    CAS  Google Scholar 

  14. Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35:11–17

    CAS  Google Scholar 

  15. Buddhawong S, Kuschk P, Mattusch J, Wiessner A, Stottmeister U (2005) Removal of arsenic and zinc using different laboratory model wetland systems. Eng Life Sci 5:247–252

    Article  CAS  Google Scholar 

  16. Cambours MA, Heinsoo K, Granhall U, Nejad P (2006) Frost related dieback in Estonian energy plantations of willows in relation to fertilisation and pathogenic bacteria. Biomass Bioenerg 30:220–230

    Article  Google Scholar 

  17. Cao HF, Liu J, Zhuang YH, Glindemann D (2000) Emission sources of atmospheric phosphine and simulation of phosphine formation. Sci China Ser B 43:162–168

    Article  CAS  Google Scholar 

  18. Choi JH, Park SS, Jaffè PR (2006) The effect of emergent macrophytes on the dynamics of sulfur species and trace metals in wetland sediments. Environ Pollut 140:286–293

    Article  CAS  Google Scholar 

  19. Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  20. Decamp O, Warren A (1998) Bacterivory in ciliates isolated from constructed wetlands (reed beds) used for wastewater treatment. Water Res 32:1989–1996

    Article  CAS  Google Scholar 

  21. Decamp O, Warren A, Sanchez R (1999) The role of ciliated protozoa in subsurface flow wetlands and their potential as bioindicators. Water Sci Technol 40:91–98

    CAS  Google Scholar 

  22. Decamp O, Warren A (2000) Investigation of E. coli removal in various designs of subsurface flow wetlands used for wastewater treatment. Ecol Eng 14:293–299

    Article  Google Scholar 

  23. Devai I, Felföldy L, Wittner I, Plosz S (1988) Detection of phosphine new aspects of the phosphorus cycle in the hydrosphere. Nature 333:343–345

    Article  CAS  Google Scholar 

  24. Faulwetter JL, Gagnon V, Sundberg C, Chazarenc F, Burr MD, Brisson J, Camper AK, Stein OR (2009) Microbial processes influencing performance of treatment wetlands: a review. Ecol Eng 35:987–1004

    Article  Google Scholar 

  25. Flessa H, Fischer WR (1992) Redox processes in the rhizosphere of terrestrial and paludal plants. Zeitschrift für Pflanzenernährung und Bodenkunde 155:373–378

    Article  CAS  Google Scholar 

  26. Franzer-Williams R, Avery L, Winward G, Shirley-Smith C, Jefferson B (2006) The green roof water recycling system- a novel constructed wetland for urban grey water recycling. In: 10th international conference on wetland systems for water pollution control, 23–29 Sept 2006, pp 411

    Google Scholar 

  27. Garcia J, Capel V, Castro A, Ruiz I, Soto M (2007) Anaerobic biodegradation tests and gas emissions from subsurface flow constructed wetlands. Biores Technol 98:3044–3052

    Article  CAS  Google Scholar 

  28. Gauci V, Fowler D, Chapman DJ, Dise NB (2004) Sulfate deposition and temperature controls on methane emission and sulphur forms in peat. Biogeochemistry 71:141–162

    Article  CAS  Google Scholar 

  29. Gersberg RM, Gearhart RA, Yves M (1989) Pathogen removal in constructed wetlands. In: Hammer DA (ed) Constructed wetlands for wastewater treatment; municipal, industrial and agricultural. Lewis, Chelsea, pp 431–446

    Google Scholar 

  30. Gersberg RM, Lyon SR, Brenner R, Elkins BV (1989) Integrated wastewater treatment using artificial wetlands: a gravel marsh case study. In: Hammer DA (ed) Constructed wetlands for wastewater treatment; municipal, industrial and agricultural. Lewis, Chelsea, pp 145–152

    Google Scholar 

  31. Ghermandi A, Bixio D, Traverso P, Cersosimo I (2006) The removal of pathogens in constructed wetlands and its implications for water reuse. In: Proceedings of the 10th international conference on wetland systems for water pollution control. Lisbon, pp 385–397

    Google Scholar 

  32. Glindemann D, Edwards M, Liu J, Kuschk P (2005) Phosphine in soils, sludges, biogases and atmospheric implications – a review. Ecol Eng 25:457–463

    Article  Google Scholar 

  33. Gonzalias AE, Kuschk P, Wiessner A, Kästner M, Köser H (2007) Treatment of an articial sulphide containing wastewater in subsurface horizontal flow laboratory-scale constructed wetlands. Ecol Eng 31:259–268

    Article  Google Scholar 

  34. Graber A, Junge R (2009) Aquaponic systems: nutrient recycling from fish wastewater by vegetable production. Desalination 246:147–156

    Article  CAS  Google Scholar 

  35. Grabow WOK (1995) Humanpathogene Viren und ihr Verhalten bei der Wassergewinnung und Aufbereitung. Wiener Mitteilungen. Wasser, Abwasser. Gewässer 128:1–8

    Google Scholar 

  36. Grabow WOK (2000) Bacteriophages: update on application as models for viruses in water. Water SA 27:251–268

    Google Scholar 

  37. Graczyk TK, Lucy FE, Tamang L, Mashinski Y, Boraders MA, Connolly M, Cheng H-WA (2009) Propagation of human enteropathogens in constructed horizontal wetlands used for tertiary wastewater treatment. Appl Environ Microbiol 75:4531–4538

    Article  CAS  Google Scholar 

  38. Gros M, Petrovic M, Marcelo D (2006) Multi-residue analytical methods using LC-tandem MS for the determination of pharmaceuticals in environmental and wastewater samples: a review. Anal Bioanal Chem 386:941–952

    Article  CAS  Google Scholar 

  39. Gross B, Montgomery-Brown J, Naumann A, Reinhard M (2004) Occurrence and fate of pharmaceuticals and alkylphenol ethoxylate metabolites in an effluent-dominated river and wetland. Environ Toxicol Chem 23:2074–2083

    Article  CAS  Google Scholar 

  40. Groudev S, Georgiev P, Spasova I, Nicolova M (2008) Bioremediation of acid mine drainage in a uranium deposit. Hydrometallurgy 94:93–99

    Article  CAS  Google Scholar 

  41. Hasselgren K (1998) Use of municipal waste products in energy forestry: highlights from 15 years of experience. Biomass Bioenerg 15:71–74

    Article  CAS  Google Scholar 

  42. Helby P, Rosenqvist H, Roos A (2006) Retreat from Salix – Swedish experience with energy crops in the 1990. Biomass Bioenerg 30:422–427

    Article  Google Scholar 

  43. Henshaw PF, Zhu H (2001) Biological conversion of hydrogen sulfide to elemental sulphur in a fixed-film continuous flow photo-reactor. Water Res 35:3605–3610

    Article  CAS  Google Scholar 

  44. Herbst M, Kappen L (1993) Die Rolle des Schilfs im standörtlichen Wasserhaushalt eines norddeutschen Sees. Phytocoenologia 23:51–64

    Google Scholar 

  45. Hill VR (2003) Prospects for pathogen reductions in livestock wastewaters: a review. Crit Rev Environ Sci Technol 33:187–235

    Article  Google Scholar 

  46. Hintemann T, Schneider C, Scholer HF, Schneider RJ (2006) Field study using two immunoassays fort he determination of estradiol and ethinylestradiol in the aquatic environment. Water Res 40:2287–2294

    Article  CAS  Google Scholar 

  47. Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biol 46:431–451

    Article  CAS  Google Scholar 

  48. Imfeld G, Braeckevelt M, Kuschk P, Richnow HH (2009) Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 74:349–362

    Article  CAS  Google Scholar 

  49. Inamori R, Gui P, Dass P, Matsumura M, Xu KQ, Kondo T, Ebie Y, Inamori Y (2007) Investigating CH4 and N2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms. Process Biochem 42:363–373

    Article  CAS  Google Scholar 

  50. Jackson RB, Carpenter SR, Dahm CN, McKnight DM, Naiman RJ, Postel SL (2001) Water in a changing world. Ecol Appl 11:1027–1045

    Article  Google Scholar 

  51. Janssen AJH, Ma SC, Lens P, Lettinga G (1997) Performance of a sulfide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Biotechnol Bioeng 53:32–40

    Article  CAS  Google Scholar 

  52. Janssen AJH, Sleyster R, Vanderkaa C, Jochemsen A, Bontsema J, Lettinga G (1995) Biological sulphide oxidation in a fed-batch reactor. Biotechnol Bioeng 47:327–333

    Article  CAS  Google Scholar 

  53. Jenkins RO, Morris TA, Craig PJ, Ritchie AW, Ostah N (2000) Phosphine generation by mixed- and monoseptic-culture of anaerobic bacteria. Sci Total Environ 250:73–81

    Article  CAS  Google Scholar 

  54. Ji S, Kim S, Ko J (2008) The status of the passive treatment systems for acid mine drainage in South Korea. Environ Geol 55:1181–1194

    Article  CAS  Google Scholar 

  55. Jordao EP, Volschan I (2004) Cost-effective solutions for sewage treatment on developing countries – the case of Brazil. Water Sci Technol 50:237–242

    CAS  Google Scholar 

  56. Kadlec R, Knight R, Vymazal J, Brix H, Cooper P, Haberl R (2000) Constructed wetlands for pollution control. IWA, London

    Google Scholar 

  57. Kadlec RK, Wallace SD (2008) Treatment wetlands. CRC Press, Boca Raton

    Book  Google Scholar 

  58. Kalin M (2004) Passive mine water treatment: the correct approach? Ecol Eng 22:299–304

    Article  Google Scholar 

  59. Khan NI, Owens G, Bruce D, Naidu R (2009) Human arsenic exposure and risk assessment at the landscape level: a review. Environ Geochem Health 31:143–166

    Article  CAS  Google Scholar 

  60. Kumar JIN, Viyol SV (2009) Short-term diurnal and temporal measurement of methane emission in relation to organic carbon, phosphate and sulphate content of two rice fields of central Gujarat, India. Paddy Water Environ 7:11–16

    Article  Google Scholar 

  61. Lamers LPM, Ten Dolle GE, Van den Berg STG, Van Delft SPJ, Roelofs JGM (2001) Differential responses of freshwater wetland soils to sulphate pollution. Biogeochemistry 55:87–102

    Article  CAS  Google Scholar 

  62. Langergraber G, Giraldo D, Mena J, Meyer D, Pena M, Toscazo A, Brovelli A, Korkusuz EA (2009) Recent developments in numerical modelling of subsurface flor constructed wetlands. Sci Total Environ 407:3931–3943

    Article  CAS  Google Scholar 

  63. Larcher A (1976) Ökologie der Pflanzen, Band 2. Ulmer, Stuttgart

    Google Scholar 

  64. Leclerc H, Edberg S, Pierzo V, Delattre JM (2000) Bacteriophages as indicators of enteric viruses and public health risk in groundwaters. J Appl Microbiol 88:5–21

    Article  CAS  Google Scholar 

  65. Lee CG, Fletcher TD, Sun GZ (2009) Nitrogen removal in constructed wetland systems. Eng Life Sci 9:11–22

    Article  CAS  Google Scholar 

  66. Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jorgensen BB (2007) Diversity and abundance of sulphate-reducing microorganisms in the sulphate and methane zones of a marine sediment, Black Sea. Environ Microbiol 9:131–142

    Article  CAS  Google Scholar 

  67. Li XL, Zhang XY, Xu H, Cai ZC, Yagi K (2009) Methane and nitrous oxide emissions from rice paddy soil as influenced by timing of application of hydroquinone and dicyandiamide. Nutr Cycl Agroecosyt 85:31–40

    Article  CAS  Google Scholar 

  68. Llorens E, Matamoros V, Domingo V, Bayona JM, Garcia J (2009) Water quality improvement in a full-scale tertiary constructed wetland: effects on conventional and specific organic contaminants. Sci Total Environ 407:2517–2524

    Article  CAS  Google Scholar 

  69. Maddison M, Soosaar K, Mauring T, Mander U (2009) The biomass and nutrient and heavy metal content of cattails and reeds in wastewater treatment wetlands for the production of construction material in Estonia. Desalination 246:120–128

    Article  CAS  Google Scholar 

  70. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  71. Mander U, Lohmus K, Teiter S, Mauring T, Nurk K, Augustin J (2008) Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands. Sci Total Environ 404:343–353

    Article  CAS  Google Scholar 

  72. Mashauri DA, Mulungu DMM, Abdulhussein BS (2000) Constructed wetland at the University of Dar Es Salaam. Water Res 34:1135–1144

    Article  CAS  Google Scholar 

  73. Matamoros V, Arias C, Brix H, Bayona JM (2009) Preliminary screening of small-scale domestic wastewater treatment systems for removal of pharmaceutical and personal care products. Water Res 43:55–62

    Article  CAS  Google Scholar 

  74. Matamoros V, Garcia J, Bayona JM (2008) Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Res 42:653–660

    Article  CAS  Google Scholar 

  75. Mayes WM, Batty LC, Younger PL, Jarvis AP, Koiv M, Vohla C, Mander U (2009) Wetland treatment at extremes of pH: a review. Sci Total Environ 407:3944–3957

    Article  CAS  Google Scholar 

  76. McDonald HB, Parkin GF (2009) Effect of sulphide inhibition and organic shock loading on anaerobic biofilm reactors treating a low-temperature, high-sulfate wastewater. Water Environ Res 81:265–288

    Article  CAS  Google Scholar 

  77. Melnick JL (1990) Umweltvirologie – ein wichtiges Thema modernen Umweltschutzes. Entwicklungstendenzen und Perspektiven. Wiener Mitteilungen, Wasser, Abwasser. Gewässer 83:7–16

    Google Scholar 

  78. Mezzanotte V, Antonelli M, Citterio S, Nurizzo C (2007) Wastewater disinfection alternatives: chlorine, ozone, peracetic acid, and UV light. Water Environ Res 79:2373–2379

    Article  CAS  Google Scholar 

  79. Morales A, Garland JL, Lim DV (1996) Survival of potentially pathogenic human-associated bacteria in the rhizosphere of hydroponically grown wheat. FEMS Microbiol Ecol 20:155–162

    Article  CAS  Google Scholar 

  80. Morgan JA, Hoet AE, Witturn TE, Monahan CM, Martin JF (2008) Reduction of pathogen indicator organisms in dairy wastewater using an ecological treatment system. J Environ Qual 37:272–279

    Article  CAS  Google Scholar 

  81. Morrison M, Aplin AC (2003) C-S-Fe geochemistry of a wetland constructed to treat acidic mine waters. Land Contam Reclam 11:239–244

    Article  Google Scholar 

  82. Münch C, Kuschk P, Röske I (2005) Root stimulated nitrogen removal: only a local effect or important for water treatment? Water Sci Technol 51:185–192

    Google Scholar 

  83. Neculita CM, Zagury GJ, Bussiere B (2007) Passive treatment of acid mine in bioreactors using sulphate-reducing bacteria: critical review and research needs. J Environ Qual 36:1–16

    Article  CAS  Google Scholar 

  84. Neori A, Reddy KR, Ciskova-Koncalova H, Agami M (2000) Bioactive chemicals and biological-biochemical activities and their functions in rhizospheres of wetland plants. Bot Rev 66:350–378

    Article  Google Scholar 

  85. Newman DK, Beveridge TJ, Morel FMM (1997) Precipiation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microb 63:2022–2028

    CAS  Google Scholar 

  86. Nghiem LD, McCutcheon J, Schäfer AI, Elimelech M (2004) The role of endocrine disrupters in water recycling: risk or mania? Water Sci Technol 50:215–220

    CAS  Google Scholar 

  87. Paredes D, Kuschk P, Köser H (2007) Influence of plants and organic matter on the nitrogen removal in laboratory-scale model subsurface flow constructed wetlands inoculated with anaerobic ammonium oxidizing bacteria. Eng Life Sci 7:565–576

    Article  CAS  Google Scholar 

  88. Prüss A, Kay D, Fewtrell L, Bartram J (2002) Estimating the burden of disease from water, sanitation, and hygiene at a global level. Environ Health Persp 110:537–542

    Article  Google Scholar 

  89. Pundsack J, Axler R, Hick R, Henneck J, Nordmann D, McCarthy B (2001) Seasonal pathogen removal by alternative on-site wastewater treatment systems. Water Environ Res 73:204–212

    Article  CAS  Google Scholar 

  90. Rahman KZ, Wiessner A, Kuschk P, Mattusch J, Kästner M, Müller RA (2008) Dynamics of arsenic species in laboratory-scale horizontal subsurface-flow constructed wetlands treating an artificial wastewater. Eng Life Sci 8:603–611

    Article  CAS  Google Scholar 

  91. Rahman KZ, Wiessner A, Kuschk P, Mattusch J, Offelder A, Kästner M, Müller RA (2008) Redox dynamics of arsenic species in the root-near environment of Juncus effusus investigated in a macro-gradient-free rooted gravel bed reactor. Eng Life Sci 8:612–621

    Article  CAS  Google Scholar 

  92. Schröder P, Navarro-Avino L, Azaizeh H, Goldhirsh AG, DiGregorio S, Komives T, Langergraber G, Lenz A, Maestri E et al (2007) Using phytoremediation technologies to upgrade waste water treatment in Europe. Environ Sci Pollut 14:490–497

    Article  CAS  Google Scholar 

  93. Seidel K (1973) Biology and water purification properties of Iris pseudacorus L. Naturwissenschaften 60:158–159

    CAS  Google Scholar 

  94. Seidel K (1965) Phenol-Abbau im Wasser durch Scirpus lacustris L während einer Versuchsdauer von 31 Monaten. Naturwissenschaften 52:398

    Article  CAS  Google Scholar 

  95. Seo DC, Hwang SH, Kim HJ, Cho JS, Lee HJ, DeLaune RD et al (2008) Evaluation of 2-and 3-stage combinations of vertical and horizontal flow constructed wetlands for treating greenhouse wastewater. Ecol Eng 32:121–132

    Article  Google Scholar 

  96. Shappell NW (2006) Estrogenic activity in the environment: municipal wastewater effluent, river, ponds, and wetlands. J Environ Qual 35:122–132

    Article  CAS  Google Scholar 

  97. Sierra-Alvarez R, Field JA, Continas I, Feijoo G, Moreira MT, Kopplin M et al (2005) Anaerobic microbial mobilization and biotransformation of arsenate adsorbed onto activated alumina. Water Res 39:199–209

    Article  CAS  Google Scholar 

  98. Singhakant C, Koottatep T, Satayavivad J (2009) Fractional analysis of arsenic in subsurface-flow constructed wetlands with different length to depth ratios. Wat Sci Technol 60:1771–1778

    Article  CAS  Google Scholar 

  99. Sleytr K, Tietz A, Langergraber G, Haberl R, Sessitsch A (2009) Diversity of abundant bacteria in subsurface vertical flow constructed wetlands. Ecol Eng 35:1021–1025

    Article  Google Scholar 

  100. Smith BR (2009) Rethinking wastewater landscapes: combining innovative strategies to address tomorrow’s urban wastewater treatment challenges. Water Sci Technol 60:1465–1473

    Article  CAS  Google Scholar 

  101. Smolders AJP, Moonen M, Zwaga K, Lucassen ECHET, Lamers LPM, Roelofs JGM (2006) Changes in pore water chemistry of desiccating freshwater sediments with different sulphur contents. Geoderma 132:372–383

    Article  CAS  Google Scholar 

  102. Stott R, May E, Matsushita E, Warren A (2001) Protozoan predation as a mechanism for the removal of cryptosporidium oocysts from wastewaters in constructed wetlands. Water Sci Technol 44:191–198

    CAS  Google Scholar 

  103. Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O et al (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    Article  CAS  Google Scholar 

  104. Ström L, Lamppa A, Christensen TR (2007) Greenhous gas emission from constructed wetland in southern Sweden. Wetlands Ecol Manag 15:43–50

    Article  CAS  Google Scholar 

  105. Tauxe-Wuersch A, De Alencastro LF, Grandjean D, Tarradellas J (2005) Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Res 39:1761–1772

    Article  CAS  Google Scholar 

  106. Vacca G, Wand H, Nikolausz M, Kuschk P, Kästner M (2005) Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands. Water Res 39:1361–1373

    Article  CAS  Google Scholar 

  107. Valipour A, Kalyan Raman R, Ghole VS (2009) A new approach in wetland systems for domestic wastewater treatment using Phragmites sp. Ecol Eng 35:1797–1803

    Article  Google Scholar 

  108. Van der Welle MEW, Niggebrugge K, Lamers LPM, Roelofs JGM (2007) Differential responses of the freshwater wetland species Juncus effuses L. and Caltha palustris L. to iron supply in sulfidic environments. Environ Pollut 147:222–230

    Article  CAS  Google Scholar 

  109. Vymazal J (2005) Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: a review. J Environ Sci Health Part A- Toxic/Hazard Subst Environ Eng 40:1355–1367

    Article  CAS  Google Scholar 

  110. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65

    Article  CAS  Google Scholar 

  111. Vymazal J (2009) The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol Eng 35:1–17

    Article  Google Scholar 

  112. Vymazal J, Masa M (2003) Horizontal sub-surface flow constructed wetland with pulsing water level. Water Sci Technol 48:143–148

    CAS  Google Scholar 

  113. Wallace S, Austin D (2008) Emerging models for nitrogen removal in treatment wetlands. J Environ Health 71:10–16

    CAS  Google Scholar 

  114. Walter R (2000) Umweltvirologie – Viren in Wasser und Boden. Springer, Wien

    Google Scholar 

  115. Wand H, Vacca G, Kuschk P, Krüger M, Kästner M (2007) Removal of bacteria by filtration in planted and non-planted sand columns. Water Res 41:159–167

    Article  CAS  Google Scholar 

  116. Werker AG, Van Loon W, Legge RL (2007) Tracer for investigation pathogen fate and removal mechanisms in mesocosms. Sci Total Environ 380:188–195

    Article  CAS  Google Scholar 

  117. Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94

    Article  CAS  Google Scholar 

  118. Wiegant WM (2001) Experiences and potential of anaerobic wastewater treatment in tropical regions. Water Sci Technol 44:107–113

    CAS  Google Scholar 

  119. Wiessner A, Gonzalias AE, Kästner M, Kuschk P (2008) Effects of sulphur cycle processes on ammonia removal in a laboratory-scale constructed wetland planted with Juncus effusus. Ecol Eng 34:162–167

    Article  Google Scholar 

  120. Wiessner A, Kappelmeyer U, Kuschk P, Kästner M (2005) Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland. Water Res 39:4643–4650

    Article  CAS  Google Scholar 

  121. Wiessner A, Kuschk P, Jechorek M, Seidel H, Kästner M (2007) Sulphur transformation and deposition in the rhizosphere of Juncus effusus in a laboratory-scale constructed wetland. Environ Pollut 155:125–131

    Article  CAS  Google Scholar 

  122. Williams JB (2002) Phytoremediation in wetland ecosystems: progress, problems, and potential. Crit Rev Plant Sci 21:607–635

    Article  CAS  Google Scholar 

  123. Witherspoon J, Allen E, Quigley C (2004) Modelling to assist in wastewater collection system odour and corrosion potential evaluations. Water Sci Technol 50:177–183

    CAS  Google Scholar 

  124. Wu J, Zhang J, Jia WL, Xie HJ, Gu RR, Li C, Gao BY (2009) Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater. Bioresour Technol 100:2910–2917

    Article  CAS  Google Scholar 

  125. Wu MY, Franz EH, Chen SL (2001) Oxygen fluxes and ammonia removal efficiencies in constructed treatment wetlands. Water Environ Res 73:661–666

    Article  CAS  Google Scholar 

  126. Xu S, Jaffé PR, Mauzerall DL (2007) A process-based model for methane emission from flooded rice paddy systems. Ecol Model 205:475–491

    Article  CAS  Google Scholar 

  127. Yang ZF, Zheng SK, Chen JJ, Sun M (2008) Purification of nitrate-rich agricultural runoff by a hydroponic system. Bioresour Technol 99:8049–8053

    Article  CAS  Google Scholar 

  128. Zhao YQ, Babatunde AO, Zhao XH, Li WC (2009) Development of alumn sludge-based constructed wetland: an innovative and cost effective system for wastewater treatment. J Environ Sci Health Part A- Toxic/Hazard Subst Environ Eng 44:827–832

    Article  CAS  Google Scholar 

  129. Zhou W, Wan M, He P, Li ST, Lin B (2002) Oxidation of elemental sulfur in paddy soils as influenced by flooded condition and plant growth in pot experiment. Biol Fert Soils 36:384–389

    Article  CAS  Google Scholar 

  130. Zurita F, De Anda J, Belmont MA (2009) Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecol Eng 35:861–869

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Helmholtz Centre for Environmental Research – UFZ as part of the SAFIRA II Research Programme (Revitalization of Contaminated Land and Groundwater at Megasites) and by the German Federal Ministry of Education and Research (BMBF); the Research Association Mining and Environment in Vietnam (RAME, 02WB0957).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kuschk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kuschk, P. et al. (2012). The Status of Research on Constructed Wetlands. In: Vitale, K. (eds) Environmental and Food Safety and Security for South-East Europe and Ukraine. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2953-7_15

Download citation

Publish with us

Policies and ethics