Skip to main content

The Role of Multiple Sequence Repeat Motifs in the Assembly of Multi-protein Complexes

  • Conference paper
  • First Online:
Macromolecular Crystallography

Abstract

Proteins incorporating multiple sequence repeats (for example ARM, HEAT, TPR, LRR and ankyrin) play critical roles in coordinating the assembly of multi-subunit complexes. This lecture will discuss the different types of protein architecture generated by successive copies of each repeat motif type and describe how these structures are suited to the formation of protein-protein interactions, allowing such proteins to function as scaffolding proteins in the assembly of multi-protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrade MA, Bork P (1995) HEAT repeats in the Huntington’s disease protein. Nat Genet 11(2):115–116

    Article  Google Scholar 

  2. Barford D (1996) Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci 21(11):407–412

    Article  Google Scholar 

  3. Barford D, Das AK, Egloff MP (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164

    Article  Google Scholar 

  4. Brotherton DH, Dhanaraj V, Wick S, Brizuela L, Domaille PJ, Volyanik E, Xu X, Parisini E, Smith BO, Archer SJ, Serrano M, Brenner SL, Blundell TL, Laue ED (1998) Crystal structure of the complex of the cyclin D-dependent kinase Cdk6 bound to the cell-cycle inhibitor p19INK4d. Nature 395(6699):244–250

    Article  ADS  Google Scholar 

  5. Chook YM, Blobel G (1999) Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp. Nature 399(6733):230–237

    Article  ADS  Google Scholar 

  6. Conti E, Uy M, Leighton L, Blobel G, Kuriyan J (1998) Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94(2):193–204

    Article  Google Scholar 

  7. D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28(12):655–662

    Article  Google Scholar 

  8. Das AK, Cohen PW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J 17(5):1192–1199

    Article  Google Scholar 

  9. Groves MR, Barford D (1999) Topological characteristics of helical repeat proteins. Curr Opin Struct Biol 9(3):383–389

    Article  Google Scholar 

  10. Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D (1999) The structure of the protein phosphatase 2A PR65/a subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96(1):99–110

    Article  Google Scholar 

  11. Harper JW, Burton JL, Solomon MJ (2002) The anaphase-promoting complex: it’s not just for mitosis any more. Genes Dev 16(17):2179–2206

    Article  Google Scholar 

  12. Hirano T, Kinoshita N, Morikawa K, Yanagida M (1990) Snap helix with knob and hole: essential repeats in S. pombe nuclear protein nuc2+. Cell 60(2):319–328

    Article  Google Scholar 

  13. Huber AH, Nelson WJ, Weis WI (1997) Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90(5):871–882

    Article  Google Scholar 

  14. Huxford T, Huang DB, Malek S, Ghosh G (1998) The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 95(6):759–770

    Article  Google Scholar 

  15. Irniger S, Piatti S, Michaelis C, Nasmyth K (1995) Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81(2):269–278

    Article  Google Scholar 

  16. Jacobs MD, Harrison SC (1998) Structure of an IkappaBalpha/NF-kappaB complex. Cell 95(6):749–758

    Article  Google Scholar 

  17. Jinek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E (2004) The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol 11(10):1001–1007

    Article  Google Scholar 

  18. Kajava AV (2002) What curves alpha-solenoids? Evidence for an alpha-helical toroid structure of Rpn1 and Rpn2 proteins of the 26 S proteasome. J Biol Chem 277(51):49791–49798

    Article  Google Scholar 

  19. King RW, Peters JM, Tugendreich S, Rolfe M, Hieter P, Kirschner MW (1995) A 20 S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81(2):279–288

    Article  Google Scholar 

  20. Kobe B (1996) Leucines on a roll. Nat Struct Biol 3(12):977–980

    Article  Google Scholar 

  21. Kobe B, Deisenhofer J (1993) Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 366(6457):751–756

    Article  ADS  Google Scholar 

  22. Lamb JR, Michaud WA, Sikorski RS, Hieter PA (1994) Cdc16p, Cdc23p And Cdc27p form a complex essential for mitosis. EMBO J 13(18):4321–4328

    Google Scholar 

  23. Lee SJ, Matsuura Y, Liu SM, Stewart M (2005) Structural basis for nuclear import complex dissociation by RanGTP. Nature 435(7042):693–696

    Article  ADS  Google Scholar 

  24. Lupas A, Baumeister W, Hofmann K (1997) A repetitive sequence in subunits of the 26 S proteasome and 20 S cyclosome (anaphase-promoting complex). Trends Biochem Sci 22(6):195–196

    Article  Google Scholar 

  25. Main ER, Xiong Y, Cocco MJ, D’Andrea L, Regan L (2003) Design of stable alpha-helical arrays from an idealized TPR motif. Structure 11(5):497–508

    Article  Google Scholar 

  26. Matsuura Y, Stewart M (2004) Structural basis for the assembly of a nuclear export complex. Nature 432(7019):872–877

    Article  ADS  Google Scholar 

  27. Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7(9):644–656

    Article  Google Scholar 

  28. Pines J (2006) Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol 16(1):55–63

    Article  Google Scholar 

  29. Russo AA, Tong L, Lee JO, Jeffrey PD, Pavletich NP (1998) Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 395(6699):237–243

    Article  ADS  Google Scholar 

  30. Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139(3):468–484

    Article  Google Scholar 

  31. Sibanda BL, Chirgadze DY, Blundell TL (2010) Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature 463(7277):118–121

    Article  ADS  Google Scholar 

  32. Sikorski RS, Boguski MS, Goebl M, Hieter P (1990) A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60(2):307–317

    Article  Google Scholar 

  33. Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, Ruderman JV, Hershko A (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 6(2):185–197

    Google Scholar 

  34. Sullivan M, Morgan DO (2007) Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol 8(11):894–903

    Article  Google Scholar 

  35. Thornton BR, Toczyski DP (2006) Precise destruction: an emerging picture of the APC. Genes Dev 20(22):3069–3078

    Article  Google Scholar 

  36. Tugendreich S, Tomkiel J, Earnshaw W, Hieter P (1995) CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81(2):261–268

    Article  Google Scholar 

  37. Vetter IR, Arndt A, Kutay U, Gorlich D, Wittinghofer A (1999) Structural view of the Ran-importin beta interaction at 2.3 A resolution. Cell 97(5):635–646

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Barford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Barford, D. (2012). The Role of Multiple Sequence Repeat Motifs in the Assembly of Multi-protein Complexes. In: Carrondo, M., Spadon, P. (eds) Macromolecular Crystallography. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2530-0_3

Download citation

Publish with us

Policies and ethics