Skip to main content

Human Mesenchymal Stem Cells: Melatonin as a Potential Anti-osteoporosis Drug

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells,Volume 3

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 3))

  • 1404 Accesses

Abstract

Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue. It is the most common metabolic bone disorder and affects millions of people in the world, especially prevalence among people over 50 years old. Melatonin, a nuroendocrinal hormone, has been proven to promote bone formation and prevent bone deterioration, although with some controversial results, in osteoblasts, bone cells, and osteoclasts through melatonin receptors-dependent or receptors-independent manner. Recently, researchers found that melatonin can enhance osteogenesis and inhibit adipogenesis in bone marrow-derived mesenchymal stem cells, as a result of that melatonin shift bone marrow precursor cells from an adipocytic line of cell towards osteoblastic differentiation. The objective of this review was to summarize the effect of melatonin on differentiation of bone marrow mesenchymal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Vale MI, Andreotti S, Borges-Silva CN, Mukai PY, Cipolla-Neto J, Lima FB (2006) Intermittent and rhythmic exposure to melatonin in primary cultured adipocytes enhances the insulin and dexamethasone effects on leptin expression. J Pineal Res 41:28–34

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Vale MI, Peres SB, Vernochet C, Farmer SR, Lima FB (2009) Adipocyte differentiation is inhibited by melatonin through the regulation of C/EBPbeta transcriptional activity. J Pineal Res 47:221–227

    Article  PubMed  CAS  Google Scholar 

  • Astudillo P, Rios S, Pastenes L, Pino AM, Rodriguez JP (2008) Increased adipogenesis of osteoporotic human-mesenchymal stem cells (MSCs) characterizes by impaired leptin action. J Cell Biochem 103:1054–1065

    Article  PubMed  CAS  Google Scholar 

  • Aubin JE (1998) Bone stem cells. J Cell Biochem Suppl 30–31:73–82

    Article  PubMed  Google Scholar 

  • Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, Andre E, Missbach M, Saurat JH, Carlberg C (1994) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 269:28531–28534

    PubMed  CAS  Google Scholar 

  • Borges-Silva CN, Fonseca-Alaniz MH, Alonso-Vale MI, Takada J, Andreotti S, Peres SB, Cipolla-Neto J, Pithon-Curi TC, Lima FB (2005) Reduced lipolysis and increased lipogenesis in adipose tissue from pinealectomized rats adapted to training. J Pineal Res 39:178–184

    Article  PubMed  CAS  Google Scholar 

  • Brydon L, Petit L, Delagrange P, Strosberg AD, Jockers R (2001) Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology 142:4264–4271

    Article  PubMed  CAS  Google Scholar 

  • Cardinali DP, Ladizesky MG, Boggio V, Cutrera RA, Mautalen C (2003) Melatonin effects on bone: experimental facts and clinical perspectives. J Pineal Res 34:81–87

    Article  PubMed  CAS  Google Scholar 

  • Conti A, Conconi S, Hertens E, Skwarlo-Sonta K, Markowska M, Maestroni JM (2000) Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res 28:193–202

    Article  PubMed  CAS  Google Scholar 

  • Hakanson DO, Bergstrom WH (1981) Phototherapy-induced hypocalcemia in newborn rats: prevention by melatonin. Science 214:807–809

    Article  PubMed  CAS  Google Scholar 

  • Hakanson DO, Penny R, Bergstrom WH (1987) Calcemic responses to photic and pharmacologic manipulation of serum melatonin. Pediatr Res 22:414–416

    Article  PubMed  CAS  Google Scholar 

  • Hardeland R (2009) Melatonin: signaling mechanisms of a pleiotropic agent. Biofactors 35:183–192

    Article  PubMed  CAS  Google Scholar 

  • Karsenty G (2001) Minireview: transcriptional control of osteoblast differentiation. Endocrinology 142:2731–2733

    Article  PubMed  CAS  Google Scholar 

  • Koyama H, Nakade O, Takada Y, Kaku T, Lau KH (2002) Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J Bone Miner Res 17:1219–1229

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Kneissel M, Mariani J, Fournier B (2000) In vitro and in vivo evidence for orphan nuclear receptor RORalpha function in bone metabolism. Proc Natl Acad Sci USA 97:9197–9202

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Cooper L, Watanabe K, Yamamoto S, Inoue H, Mishima K, Saito I (2010) Role of retinoic acid-related orphan receptor-alpha in differentiation of human mesenchymal stem cells along with osteoblastic lineage. Pathobiology 77:28–37

    Article  PubMed  CAS  Google Scholar 

  • Morrison RF, Farmer SR (1999) Insights into the transcriptional control of adipocyte differentiation. J Cell Biochem Suppl 32–33:59–67

    Article  Google Scholar 

  • Nakade O, Koyama H, Ariji H, Yajima A, Kaku T (1999) Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro. J Pineal Res 27:106–110

    Article  PubMed  CAS  Google Scholar 

  • Ohoka N, Kato S, Takahashi Y, Hayashi H, Sato R (2009) The orphan nuclear receptor RORalpha restrains adipocyte differentiation through a reduction of C/EBPbeta activity and perilipin gene expression. Mol Endocrinol 23:759–771

    Article  PubMed  CAS  Google Scholar 

  • Ostrowska Z, Kos-Kudla B, Marek B, Kajdaniuk D (2003a) Influence of lighting conditions on daily rhythm of bone metabolism in rats and possible involvement of melatonin and other hormones in this process. Endocr Regul 37:163–174

    PubMed  CAS  Google Scholar 

  • Ostrowska Z, Kos-Kudla B, Nowak M, Swietochowska E, Marek B, Gorski J, Kajdaniuk D, Wolkowska K (2003b) The relationship between bone metabolism, melatonin and other hormones in sham-operated and pinealectomized rats. Endocr Regul 37:211–224

    PubMed  CAS  Google Scholar 

  • Radio NM, Doctor JS, Witt-Enderby PA (2006) Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade. J Pineal Res 40:332–342

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 34:237–256

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Paredes SD, Manchester LC, Tan DX (2009) Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 44:175–200

    Article  PubMed  CAS  Google Scholar 

  • Roth JA, Kim BG, Lin WL, Cho MI (1999) Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem 274:22041–22047

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Barcelo EJ, Mediavilla MD, Tan DX, Reiter RJ (2010) Scientific basis for the potential use of melatonin in bone diseases: osteoporosis and adolescent idiopathic scoliosis. J Osteoporos 2010:830231

    PubMed  CAS  Google Scholar 

  • Sanchez-Hidalgo M, Lu Z, Tan DX, Maldonado MD, Reiter RJ, Gregerman RI (2007) Melatonin inhibits fatty acid-induced triglyceride accumulation in ROS17/2.8 cells: implications for osteoblast differentiation and osteoporosis. Am J Physiol Regul Integr Comp Physiol 292:R2208–R2215

    Article  PubMed  CAS  Google Scholar 

  • Satomura K, Tobiume S, Tokuyama R, Yamasaki Y, Kudoh K, Maeda E, Nagayama M (2007) Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo. J Pineal Res 42:231–239

    Article  PubMed  CAS  Google Scholar 

  • Sethi S, Radio NM, Kotlarczyk MP, Chen CT, Wei YH, Jockers R, Witt-Enderby PA (2010) Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res 49:222–238

    Article  PubMed  CAS  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Qi WB, Zhang M, Weintraub ST, Cabrera J, Sainz RM, Mayo JC (1999) Identification of highly elevated levels of melatonin in bone marrow: its origin and significance. Biochim Biophys Acta 1472:206–214

    Article  PubMed  CAS  Google Scholar 

  • Witt-Enderby PA, Radio NM, Doctor JS, Davis VL (2006) Therapeutic treatments potentially mediated by melatonin receptors: potential clinical uses in the prevention of osteoporosis, cancer and as an adjuvant therapy. J Pineal Res 41:297–305

    Article  PubMed  CAS  Google Scholar 

  • Wolden-Hanson T, Mitton DR, McCants RL, Yellon SM, Wilkinson CW, Matsumoto AM, Rasmussen DD (2000) Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 141:487–497

    Article  PubMed  CAS  Google Scholar 

  • Zaminy A, Kashani IR, Barbarestani M, Hedayatpour A, Mahmoudi R, Vardasbi S, Shokrgozar MA (2008) Effects of melatonin on the proliferation and differentiation of rat adipose-derived stem cells. Indian J Plast Surg 41:8–14

    Article  PubMed  Google Scholar 

  • Zhang L, Su P, Xu C, Chen C, Liang A, Du K, Peng Y, Huang D (2010) Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARgamma expression and enhancing Runx2 expression. J Pineal Res 49:364–372

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Huang, D., Zhang, L. (2012). Human Mesenchymal Stem Cells: Melatonin as a Potential Anti-osteoporosis Drug. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells,Volume 3. Stem Cells and Cancer Stem Cells, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2415-0_20

Download citation

Publish with us

Policies and ethics